

PRE-DESIGN INVESTIGATION TECHNICAL MEMORANDUM OPERABLE UNIT 3

Nease Chemical Site, Columbiana and Mahoning Counties, Ohio

Submitted To: U.S. Environmental Protection Agency

77 West Jackson Blvd. Chicago, IL 60604

Ohio EPA

2110 East Aurora Road Twinsburg, OH 44087

Prepared for: RÜTGERS Organics Corporation

201 Struble Road State College, PA 16801

Prepared By: Golder Associates Inc.

200 Century Parkway, Suite C Mt. Laurel, NJ 08054 USA

Distribution:

2 Copies 2 Copies U.S. Environmental Protection Agency Ohio Environmental Protection Agency

2 Copies RÜTGERS Organics Corporation

1 Copy Golder Associates Inc.

August 2011

A world of capabilities delivered locally

Golder Associates

Project No. 933-6154

August 1, 2011

Project No. 933-6154

Mr. Dion Novak USEPA Region V (SR-6J) 77 West Jackson Boulevard Chicago, IL 60604

RE:

PRE-DESIGN INVESTIGATION TECHNICAL MEMORANDUM FOR OPERABLE UNIT 3 NEASE CHEMICAL SITE, COLUMBIANA AND MAHONING COUNTIES, OHIO

Dear Dion,

On behalf of RÜTGERS Organics Corporation (ROC), Golder Associates Inc. (Golder Associates) is pleased to submit the Pre-Design Investigation Technical Memorandum for Operable Unit 3 of the Nease Chemical Site located in Mahoning and Columbiana Counties, Ohio. Copies have also been sent directly to the Ohio Environmental Protection Agency (Ohio EPA).

This Technical Memorandum provides a description of the Pre-Design Investigation activities conducted in support of the upcoming Remedial Design work for OU-3. A preliminary summary of these activities and the results of analytical testing available at that time were shared with the Agencies during our meeting on June 1, 2011. This report provides further evaluation of the results and includes the fish tissue analytical data that were not available at the time of our meeting.

If you should have any questions during your review, please do not hesitate to contact Dr. Rainer Domalski at ROC (814/238-5200) or the undersigned (856/793-2005). We look forward to working with the Agencies as we move forward into the Remedial Design stage of work for the Site.

Very truly yours,

GOLDER ASSOCIATES INC.

Andrew P. Joslyn

Senior Project Environmental Engineer

P. Stephen Finn, C. Eng.

Principal

CC:

Sheila Abraham

Ohio EPA

Rainer Domalski

ROC

APJ/PSF/bjb

Table of Contents

1.0	INTRO	DUCTION	1
2.0	DESCR 2.1	RIPTION OF FIELD ACTIVITIES MFLBC Reconnaissance 2.1.1 Overview	2
	2.2	2.1.2 Results MFLBC Sediment Sampling 2.2.1 Overview 2.2.2 Field Procedures	4 4
	2.3	MFLBC Floodplain Soil Sampling 2.3.1 Overview 2.3.2 Field Procedures	5 5
	2.4	MFLBC Fish Tissue Sampling	7 7
3.0	OU-3 S 3.1 3.2	SAMPLING RESULTS Data Validation MFLBC Sediment Analytical Results 3.2.1 Discussion of Mirex Results	<u>e</u>
	3.3	3.2.2 Surface-Weighted Average Concentration for Mirex in Sediment MFLBC Floodplain Soil Analytical Results 3.3.1 Discussion of Mirex Results	9 10
	3.4	3.3.2 Calculation of Exposure Unit (1-acre) Concentrations MFLBC Fish Tissue Analytical Results 3.4.1 Discussion of Fillet and Offal Mirex and Lipid Results 3.4.2 Whole Body Fish Tissue Concentrations	10 11 11
4.0	CONCL	LUSIONS	13
5.0	REFER	RENCES	14
List o	f Table	es ·	
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	2 3 4 5	MFLBC Sediment Sampling Program Summary MFLBC Fine-Grained Sediment Sub Sample Location Summary MFLBC Floodplain Soil Sample Summary MFLBC Fish Sample Summary MFLBC Validated Sediment Analytical Results Summary MFLBC Sediment Bodies Surface Area Summary	
Table 7 Table 8 Table 9 Table 1 Table 1	3) 10	MFLBC Mirex SWACs for Sediment MFLBC Validated Floodplain Soil Analytical Results Summary MFLBC Fish Tissue Analytical Results Summary MFLBC Fish Tissue Sample Weight Summary MFLBC Fish Tissue Calculated Whole Body Results	

List of Figures

Figure 1	Operable Unit 3 Location Map
Figure 2	Overall OU-3 PDI Sampling Program
Figure 3	Sediment Sampling Areas - River Miles 31.0 to 32.0
Figure 4	Sediment Sampling Areas - River Miles 32.1 to 33.0
Figure 5	Sediment Sampling Areas - River Miles 33.1 to 34.0

ii

Project No. 933-6154

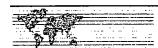
Figure 6	Sediment Sampling Areas – River Miles 34.1 to 35.0
Figure 7	Sediment Sampling Areas – River Miles 35.1 to 36.0
Figure 8	Sediment Sampling Areas – River Miles 36.1 to 37.0
Figure 9	Sediment Sampling Areas – River Miles 37.1 to 37.6
Figure 10	Floodplain Sampling Map: River Mile 32.9 - 33.3 Vicinity
Figure 11	Floodplain Sampling Map: River Mile 34.8 - 35.4 Vicinity
Figure 12	Sediment Mirex Concentration Distance Graph
Figure 13	Fish Tissue Fillet Mirex Concentration Distance Graph
Figure 14	Comparison of 2005 and 2010 Fish Tissue Fillet Mirex Concentrations
Figure 15	Fish Tissue Whole Body Mirex Concentration Distance Graph

List of Appendices

Appendix A Photographs of MFLB0

Appendix B Appendix C Analytical Laboratory Data (on disk)
Data Quality Assessment

1.0 INTRODUCTION


This Pre-Design Investigation (PDI) Technical Memorandum (TM) has been prepared by Golder Associates Inc. (Golder), on behalf of RÜTGERS Organics Corporation (ROC), for Operable Unit 3 (OU-3) of the Nease Chemical Site, located in Columbiana and Mahoning Counties, Ohio (Site). OU-3 comprises contaminated portions of Feeder Creek (located at the former Nease Chemical Facility) and Middle Fork Little Beaver Creek (MFLBC), including associated floodplain soils. Figure 1 shows the location of the Site (including the former Nease facility and the MFLBC). This PDI TM describes the investigation procedures followed for the PDI field work conducted between September 2009¹ and March 2011 pursuant to the PDI Work Plan (Work Plan), which was approved by the United States Environmental Protection Agency (USEPA) on September 8, 2010. The PDI TM also presents the analytical laboratory results for the samples collected during the PDI. The Work Plan was prepared pursuant to the Administrative Order on Consent (AOC) between ROC and USEPA effective June 30, 2009. The overall purpose of this report is to present analytical results that will form the foundation for the Remedial Design (RD).

The former Nease Chemical Facility, located on Benton Road near Allen Road in Salem, Ohio included a manufacturing area (west of the Norfolk Southern Railroad tracks) and wastewater ponds (on both sides of the railroad tracks). Feeder Creek flows from the Nease property (on the east side of the railroad tracks) to the MFLBC and likely represented the primary transport route for Site-related contaminants to enter the MFLBC system. The confluence of Feeder Creek and the MFLBC is at about MFLBC River Mile (RM) 37.6. From there, the MFLBC flows northeast into Mahoning County and then turns back to the south and flows back into and through Columbiana County until it joins with two other creeks (North Fork and West Fork) to form Little Beaver Creek, which flows south to the Ohio River.

The MFLBC has a total river mile length of approximately 40.6 miles and all waters of the MFLBC are designated for agriculture, industry, and primary contact uses, but none are designated for "drink" use. The properties bordering the MFLBC include residential, recreational, agricultural, and industrial/commercial uses. As shown in the aerial photograph on Figure 1, land use along the creek from river mile (RM) 37.6 through RM 31.0 can be classified as "rural", consisting of primarily agricultural land with some dispersed residential areas, and relatively little commercial use. Colonial Villa, a mobile home community, represents the most densely populated residential area within the target reach and it is located between RM 35.0 and RM 36.0. The contaminant of concern in OU3 is mirex, which was the main focus of the PDI study.

¹ September 2009 activities were conducted pursuant to a separate Reconnaissance Work Plan that was approved by the Agencies on September 11, 2009

2.0 DESCRIPTION OF FIELD ACTIVITIES

The overall objective for the OU-3 PDI was to define the extent and distribution of mirex contamination in MFLBC sediments, adjacent floodplain soils, and fish between RM 37.6 and 31.0. These data will be used to identify specific target areas for remediation where mirex surface-weighted average concentrations (SWACs) exceed clean-up levels, and to identify areas of high quality habitat within areas targeted for remediation. The PDI data will also serve as "baseline" data against which future long-term monitoring results can be compared. The extent of the overall sampling program is shown on Figure 2.

tocis ED on aneas for

2.1 MFLBC Reconnaissance

2.1.1 Overview

As specified in the AOC Statement of Work (SOW), Site Reconnaissance was required as a first step in the PDI, and a Work Plan Memorandum describing the planned reconnaissance activities was submitted to the Agencies on August 24, 2009. The Agencies provided comments via e-mail on August 31, 2009 and ROC also provided responses to these comments on August 31, 2009. The Agencies approved the Work Plan Memorandum (as modified by the response to comments) on September 11, 2009.

In order to facilitate dynamic decision-making and efficient data collection in the PDI, the Site Reconnaissance described in the Work Plan Memorandum included some portions of the PDI scope required by the SOW, in addition to the basic requirements specified for the Site Reconnaissance.

The reconnaissance included the following tasks, as outlined in the PDI Reconnaissance Work Plan Memorandum:

- Detailed mapping of the extent of fine-grained sediment bodies from RM 37.6 through 31.0² using a handheld global positioning system (GPS) device.
- Detailed description of fine-grained sediment through collection of cores and/or grab samples of sediment within the mapped sediment bodies for visual classification.
- Description of general sediment type in areas adjacent to fine-grained sediment bodies, including at least one description per 0.1 river mile (for segments that included fine-grained sediment).
- Laboratory grain size analyses of each significant fine-grained sediment "type" encountered.
- Photographic documentation of the stream channel and banks at each 0.1 river mile.
- Mapping of obstructions within the stream that might interfere with investigation or remediation activities (including photographic documentation).
- Identification of areas of high quality habitat.

² As agreed with Ohio EPA's on-site representative, one segment of the stream from RM 36.4 to RM 36.7 was not mapped during the Reconnaissance based on the objections of a nearby riparian area property owner. Access agreements for portions of RM 36.4 to 36.7 were later signed by the property owners, so the area was sampled during the PDI sampling activities.

Discussions with riparian area property owners³ regarding the upcoming PDI work and associated access requirements.

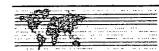
2.1.2 Results

A Trimble GeoXH handheld GPS device running ESRI's ArcPad software version 8.0 with possible GPS horizontal accuracy of 1 ft or better was used to collect spatial data and other observations in the field. For each location measurement collected with the handheld GPS unit, the estimated accuracy is recorded by the device. Accuracy can be influenced by time of day (number and locations of available satellites) and by obstructions such as bridges and the forest canopy, so in some cases, the theoretically possible accuracy was not achieved during the Reconnaissance work. The rated accuracy of the device is also influenced by the exact position of the satellites it uses. The positions of satellites may shift slightly from the predicted positions, so the GPS device accounts for these possible shifts when determining the estimated accuracy of the data. In order to reduce the uncertainty related to the exact positions of satellites, there are services that collect data on the satellite locations and by using these data, it is possible to revise the location information collected by the GPS in the field, and in many cases, the confidence in the GPS data (and therefore the accuracy) is significantly increased by using known satellite positions. This process is referred to as post-processing. Post-processing of the data was conducted using Trimble GPS Analyst's Differential Correction tool and the results indicate that approximately 91% of the location data collected were accurate to within 1 meter with about 56% being accurate to within 0.5 meter. The accuracy of the collected locations is important because the GPS location data were used for identifying sampling locations during the PDI sampling and will also be used for design purposes.

The detailed mapping of sediment bodies showed that between RM 31.0 and approximately RM 36.3, the majority of fine-grained sediment is located in small pockets close to the banks of the stream in areas that would be expected to be depositional given the stream morphology. These are areas where water velocities are slower (such as on the outsides of bends), allowing fine particles to settle out of suspension. In addition, fine-grained sediment is limited to a thickness of 1 or 2 inches in most places, and in some areas, fine-grained sediment is found only in the interstices between larger cobbles. From RM 36.3 to at least RM 37.7, fine-grained sediment is trapped by submerged aquatic vegetation (*elodea* or similar species) that covers up to 70% of the streambed in some areas. These plants cause the water velocity to slow, allowing fine-grained sediment to settle out and collect near the roots of the plants. These plants were typically found growing in coarser materials, such as sands and gravels, so the fine-grained sediment in these areas is restricted to a thickness of 1 to 2 inches at the base of the vegetation. The frequency of occurrence of this aquatic vegetation throughout this segment of the stream appeared to be higher than in previous investigations suggesting that the growth may be a relatively recent occurrence, potentially as a result of increased nutrient loading, or other non-Site related environmental factors.

³ These discussions were coordinated and primarily conducted by Ohio EPA.

In addition to the sediment mapping activities, the locations of obstructions in the stream were also recorded and photographed to aid in the development of future remediation plans. A total of 51 obstructions (typically fallen trees blocking the stream) were encountered. In addition, at least four photographs were taken in 0.1 RM segments to provide information about the stream habitat quality, physical access, and floodplain conditions (see Appendix A). The locations of photographs were recorded using the GPS and are shown on Figures 3 through 9.


2.2 MFLBC Sediment Sampling

2.2.1 Overview

The purpose of sediment sampling in MFLBC was to obtain current representative mirex concentration data at a high enough resolution to allow for calculations of surface-weighted average concentrations (SWACs) for each one river mile exposure unit. As stated in the Work Plan, mirex tends to adhere to fine-grained, organic-rich sediments. Therefore, the results of the detailed mapping of fine-grained sediments performed during the reconnaissance were used to identify sediment sampling locations. Sediment samples were collected as composites across 0.1 river mile areas and analyzed for mirex, total organic carbon (TOC), grain size distribution, and total solids by TestAmerica, Inc. of North Canton, OH (TA). The sediment remedy is to be designed to achieve a SWAC of 0.5 mg/kg for each 1 mile exposure area between RM 31.0 and RM 37.6. The results of the PDI reconnaissance and sampling will be used to determine how to achieve clean-up levels while protecting habitat to the greatest extent possible. As described in the Record of Decision (ROD), the clean-up level may be modified during detailed design to be as high as 0.75 mg/kg in certain reaches so as to protect areas of high-quality habitat.

A total of 42 composite fine-grained samples and 7 coarse-grained samples were collected (not including field duplicates and matrix spike/matrix spike duplicates [MS/MSDs]) at the locations shown on Figures 3 through 9. The analytical results from sediment samples are discussed in Section 3.2. Table 1 summarizes the composite samples and indicates deviations from the proposed sampling plan, and Table 2 lists all the sub-sample locations that comprise the composite samples. Field changes to the overall sampling program were required for the following reasons:

- Fine-grained sediment was found primarily on only one side of the MFLBC at any given location. The proposed sampling program from the Work Plan indicated that it might be appropriate in some areas to collect separate samples from each side of the stream to help with appropriate staging of sediment removal during remedial action. However, the field team determined that one sample was appropriate in most cases.
- Sediment depth The Work Plan included an allowance for collecting samples from deeper than 6 inches and archiving them; however, fine-grained sediments were not found during sampling at depths greater than 6 inches, so deeper samples could not be collected.

Access restrictions - Certain portions of the stream could not be sampled because it was not possible to obtain access agreements from the associated property owner; however, these areas represented a small percentage of the overall sampling area. Table 1 shows which proposed samples could not be collected for this reason.

2.2.2 Field Procedures

Sediment samples were collected consistent with the approved Work Plan except for the following minor deviation, which was agreed to by the on-Site Ohio EPA representative.

Plastic 5-gallon buckets were not used to reduce surface water flow as this had not been done during previous MFLBC sampling events, and the logistics of transporting all the necessary equipment would have required many more trips through adjacent property owners' land and may have led to more disturbance of the sediment.

The field procedures for collecting sediment samples were as follows:

- Each sub-sample location was identified based on presence of fine-grained sediment, using results of prior Reconnaissance work to help locate sediment bodies
- Handheld GPS was used to mark sediment sub-sample location and to enter a sub-sample ID and description
- Decontaminated stainless steel spoon and bowl were used (new spool and bowl were used at the start of each new composite) to collect sub-samples. Decontamination included an initial water rub/rinse, cleaning with soapy water and rinse with tap water, rinse with distilled water, and final rinse with acetone.
- Large debris such as whole leaves and twigs were removed prior to homogenization
- Sub-sample homogenized thoroughly with previous sub-samples
- At completion of composite area, sample was thoroughly homogenized and then distributed into sampling containers (amber jar for mirex to avoid photo-degradation, clear jar for TOC, and 1-gallon zip-top bag for grain size)
- Sediment samples were transported under Chain of Custody to TA for analysis

2.3 MFLBC Floodplain Soil Sampling

2.3.1 Overview

The main objectives of the floodplain soil investigation were to refine the extent of mirex impacts and to characterize the physical conditions of the floodplain for design purposes. Composite samples were collected from ¼ acre and ½ acre areas within each 1-acre exposure unit and analyzed for mirex, TOC, and grain size distribution. As described in the ROD, the floodplain soil remedy is to be designed to achieve a SWAC of 1.0 mg/kg for each 1-acre exposure area. The results of the investigation will be used to determine how to achieve the clean-up level while protecting habitat to the maximum extent possible.

The sampling approach was designed to achieve a higher-density of samples than had previously been collected in the areas targeted for remediation, and to better represent appropriate exposure units. Horizontal composite soil samples were collected from approximately rectangular %-acre areas so that

there would be 4 samples for each 1-acre exposure unit area. Each ¼-acre sub-sample contained at least 5 grab samples from distinct locations within the area, so the overall exposure unit was represented by at least 20 samples. A total of 192 samples (not including duplicates and MS/MSDs) were collected: 63 ½-acre samples and 129 ¼-acre samples.

Aliquots of the homogenized soil from each pair of %-acre composite samples were combined into one %-acre primary sample. The %-acre composite samples were analyzed first, while the %-acre samples were archived at the laboratory⁴. The sequence for analysis of %-acre samples began with those areas in or immediately adjacent to previously sampled areas where the clean-up level was exceeded. Composite samples from adjacent ½-acre areas were initially archived. These samples were then analyzed sequentially beginning with those bordering the initial samples, followed by additional adjacent samples until a concentration below the clean-up level was measured across the entire floodplain width. Figures 10 and 11 show all samples collected, the samples that were analyzed, and those that remain archived. The ¼-acre composite samples were archived so that if significant areas of floodplain soil exceeded the cleanup level, then the area to be addressed could be refined. For example, if one ½-acre area was slightly above the cleanup level, then the two separate ¼-acre samples may be analyzed to determine if only a portion of that overall ½-acre was actually exceeding the cleanup goal, rather than the entire area. However, based on the results of the sampling program, it was not deemed necessary to analyze any of the archived ¼-acre samples. Table 3 provides a summary of all the areas sampled and the samples_analyzed at the laboratory. The analytical results are discussed in Section 3.3.

2.3.2 Field Procedures

Floodplain soil samples were collected consistent with the approved Work Plan except for the following minor deviations, which were agreed to by the on-Site Ohio EPA representative.

- Sub-sample locations were not homogenized in a separate bowl before being added to the composite. This was because a trowel was used for sampling, which achieved approximately an equal volume at each sample location. The entire composite sample was mixed after each discrete sub-sample was added so that a better homogenized sample would be achieved by the time the entire composite was collected.
- Only half of the proposed ½-acre area near RM 35.3 (FPS10-002) could be sampled because the southern half of that area is covered (paved) by a wastewater treatment facility associated with the adjacent mobile home park. Therefore, this area was represented by one ¼-acre sample (FPS10-002-01), which was analyzed immediately in place of the proposed ½-acre area sample.
- In addition to the area noted above, there was one additional ½-acre area for which a sample was not collected. After collecting the two ¼-acre samples within area FPS10-008 (i.e., FPS10-008-01 and FPS10-008-02), there was insufficient sample volume to prepare a composite ½-acre sample. Therefore, the separate ¼-acre samples were both analyzed in place of the ½-acre sample. This does not represent a significant deviation

⁴ Three ¼-acre samples were analyzed immediately because there was no associated ½-acre area sample available. More details are provided in Section 3.

from the work plan because the two adjacent 1/2-acre sample results can be mathematically averaged to indicate the concentration of the 1/2-acre area.

The field procedures for collecting sediment samples at each 1/4-acre composite area were as follows:

to consider whom averaging


- At least five equal volume sub-samples were collected using decontaminated stainless steel trowels and placed in a decontaminated stainless steel bowl. Decontamination included an initial water rub/rinse, cleaning with soapy water and rinse with tap water, rinse with distilled water, and final rinse with acetone.
- At each sub-sample location the sampling equipment was advanced to a depth of approximately 6-inches below ground surface after surface vegetation and associated root matter was removed.
- Each sub-sample location was recorded using a handheld GPS device.
- Large debris items (such as rocks, twigs, and large roots) were removed prior to homogenization.
- Each sub-sample was homogenized thoroughly with previous sub-samples
- Remaining soil from the first ¼-acre sample within a given ½-acre area was held until sampling of the adjacent ¼-acre composite sample was collected.
- Each set of two adjacent homogenized ¼-acre composite samples were combined into one composite sample representing the associated ½-acre area.
- At completion of each composite area, samples were thoroughly homogenized and then distributed into sampling containers (amber jar for mirex to avoid photo-degradation, clear jar for TOC, and 1-gallon zip top plastic bag for grain size)
- Soil samples were transported under Chain of Custody to TA for analysis or archiving, as appropriate.

cessor

2.4 MFLBC Fish Tissue Sampling

2.4.1 Overview

The purpose of the fish tissue investigation, as noted in the SOW, was to provide a baseline sampling event consistent with the anticipated long-term fish tissue monitoring program. Seven locations were selected for fish tissue sampling: RM 38.4, RM 37.5, RM 36.7, RM 35.4, RM 33.3, RM 32.0, and RM 12.5. The stations at RM 38.4 and RM 12.5 were chosen as upstream and downstream reference points, respectively, to compare with data from within the reach of concern (i.e., between RM 31.0 and RM 37.6). As explained in the Work Plan, the final sampling locations and number of samples collected were contingent upon access limitations. The upstream and downstream ends of each sampling reach were recorded using a handheld GPS device (see Figure 2). Based on the Ohio EPA's recommendations (see Appendix C of the Work Plan), three resident fish species were targeted for sampling and analysis at each location: common carp, yellow bullhead, and white sucker. The post-remediation, long-term sampling program is anticipated to begin no sooner than 5 years after construction completion. Therefore, in order to be consistent with the long-term data, fish between the ages of 3 and 5 years old (as determined by fish length) were targeted. For each individual fish, the fillet and offal (i.e., all parts of the fish after the fillet is removed) were collected. This sampling approach was used because potential

human exposures are assessed based on fillet data, whereas potential wildlife exposures are based on the whole-body fish tissue. Because laboratory analysis of fillet and whole-body samples from identical fish is not possible, the fillet and offal were analyzed separately so that whole body concentrations could be calculated. By obtaining fillet and whole body data from the same fish, it may be possible to reduce the sampling program in the future (e.g., if a reliable fillet to whole body concentration ratio can be determined, then only fillets may be collected in the future). The only deviations from the proposed sampling program resulted from a lack of certain species at some sampling stations and/or fish sometimes being outside the targeted size range. Table 4 provides a summary of the fish tissue samples collected, including number of fish, lengths and (field-measured) weights of fish.

2.4.2 Field Procedures

Sampling procedures used were consistent with the proposed methods in the Work Plan. At each sampling station, fish were collected using a boat-mounted electroshocker (moving from downstream to upstream so as to limit the disturbance of sediment and fish prior to collection, when possible) by a joint sampling team comprising Ohio EPA and Golder personnel. During electroshocking, fish of the target species were collected into a 5-gallon plastic bucket (or similar suitable container) filled with stream water for temporary containment. After the entire target stream station had been sampled, the fish were taken to a sample preparation area.

When sufficient fish were present, composite samples (by species) were collected using a minimum of three fish⁵ within the appropriate size range for that species (see Appendix C of the Work Plan). Fish samples were filleted in the field after the length and weight were measured and recorded. Fillet samples and the remaining offal were wrapped separately in clean aluminum foil, placed in sealed plastic bags, and stored on dry ice. Common carp, yellow bullhead, and white sucker were all filleted with the skin off, consistent with Ohio EPA's fish tissue monitoring program. Decontaminated stainless steel fillet knives were used for each sample. Decontamination included an initial water rub/rinse, cleaning with soapy water, rinse with distilled water, and final rinse with acetone. Fillet boards were covered with clean aluminum foil for each sample. Latex/nitrile gloves were worn while processing fillet samples, and were changed between each sample. Fillet samples were rinsed in river water prior to placing on clean aluminum foil. Sampling protocols followed those listed in the Ohio EPA Fish Tissue Guidance Manual (Ohio EPA, 2004); however, it was not necessary to decontaminate aluminum foil that was used directly from the roll. All samples were placed on dry ice and were transported via courier to the laboratory under chain of custody for preparation/homogenization. Prior to preparation/homogenization of the samples at the laboratory, the laboratory weighed the fillet and offal samples separately to obtain total sample mass values for later use in calculating the whole-body mirex and lipid concentrations. Fish samples were analyzed by Ohio EPA's DES laboratory located in Reynoldsburg, Ohio.

⁵ Although a minimum of three fish is optimal, final decisions regarding which samples to analyze were made after all stations had been sampled. In some cases, samples were analyzed even when they did not comprise tissue from three fish.

3.0 OU-3 SAMPLING RESULTS

The PDI sampling program achieved the stated goals in the SOW and Work Plan. Although there were some deviations from the proposed sampling program, sufficient data were collected to allow for remedial design to move forward and to provide a baseline sampling round prior to remedial action.

Complete laboratory analytical results are provided on disk in Appendix B.

3.1 Data Validation

Sample holding times were met for all samples and no data were rejected during data validation. A Data Quality Assessment describing the findings of the data validation is provided in Appendix C and data are summarized in tables for the various MFLBC media as described below.

3.2 MFLBC Sediment Analytical Results

A total of 49 sediment samples were collected (not including duplicates and MS/MSDs⁶), 44 of which were analyzed by TA for mirex, TOC, and grain size (the remaining samples were archived). In addition, there were four field duplicate samples analyzed. The validated analytical results are shown in Table 5.

3.2.1 Discussion of Mirex Results

Mirex concentrations ranged from non-detect to 1.1 mg/kg, with only 6 of 49 individual samples exceeding the SWAC-based cleanup level of 0.5 mg/kg. The highest mirex concentrations were found in samples from RM 35.4 and RM 34.9, which are in the area where mirex has previously been detected at elevated concentrations in both sediment and floodplain soil. However, the extent of mirex impacts above the cleanup level was found to be lower than in previous sampling events. This data suggests improvement in sediment mirex conditions over time, which is supported by the fish tissue results as discussed in Section 3.4. A graph showing maximum detected sediment concentrations throughout the MFLBC in multiple sampling events is provided as Figure 12.

3.2.2 Surface-Weighted Average Concentration for Mirex in Sediment

Surface-weighted average concentrations (SWAC) for mirex in MFLBC sediment were calculated by using the tabulated sediment body areas from the Reconnaissance as well as additional areas identified during PDI sampling (see Table 6). For each 0.1 RM area sampled, the total surface area of sampled sediment bodies was calculated as the sum of all the individual sediment body surface areas. This total surface area was then multiplied by the mirex concentration from the composite sediment sample for that 0.1 river mile segment. Adjacent segments were then grouped into one river mile exposure units as follows: RM 31.1 thru 32.0; RM 32.1 thru 33.0; RM 33.1 thru 34.0; RM 34.5 thru 35.4; RM 35.5 thru 36.4;

⁸ For the purposes of the discussion in this section, generalizations about ranges of mirex concentrations and number of samples above certain concentrations include either the primary sample result or the field duplicate result (for locations where duplicates were collected), whichever was higher.

10

and RM 36.7 thru 37.6. Note that RM 34.1 thru RM 34.4 was not included in any of the segments because there was only one result from this reach and the concentration was very low (0.016 mg/kg). Therefore, it was more protective to consider a segment that included the two highest detections of mirex, which were at RM 35.4 and RM 34.9. In addition, the reach from RM 36.5 to RM 36.6 was not included in any of the segments as there were no samples collected from this area (access was not granted by the property owner).

The calculated SWAC mirex concentrations for sediment are provided in Table 7. As shown on the table, only one segment – RM 34.5 through RM 35.4 – had a SWAC concentration above the cleanup goal of 0.5 mg/kg. This river mile segment included the two highest detected mirex concentrations in sediment and it spans an area where floodplain soil mirex concentrations also exceed the Site cleanup level for that medium. The rest of the exposure units had mirex SWACs ranging from 0.0564 mg/kg to 0.219 mg/kg.

3.3 MFLBC Floodplain Soil Analytical Results

A total of 192 floodplain soil samples (not including field duplicates and MS/MSDs⁶) were collected (63 from ½-acre composite areas, and 129 from the ¼-acre composite sub-areas). Of the 192 samples, 52 were analyzed for mirex, TOC, and grain size and the rest were archived (some of the analyzed samples were initially archived but were later analyzed). The majority of the ¼-acre composite area samples were archived, but three were analyzed due to a lack of an associated half-acre sample. In addition, there were nine field duplicate samples analyzed. The validated analytical results are shown in Table 8.

3.3.1 Discussion of Mirex Results

Mirex concentrations in floodplain soil samples ranged from 0.0086 to 1.400 mg/kg. Out of 52 samples analyzed, only seven exceeded the cleanup goal of 1.0 mg/kg. The average concentration of all analyzed samples was 0.591 mg/kg.

3.3.2 Calculation of Exposure Unit (1-acre) Concentrations

For areas where the mirex concentration for a ½-acre sample exceeded the clean level of 1.0 mg/kg, a 1-acre exposure unit SWAC was calculated by averaging that ½-acre sample result with the adjacent ½ acre area sample with the highest mirex concentration (for example, FPS10-20 was combined with FPS10-21). The combinations of ½-acre sample areas to create 1-acre exposure units are shown on Figures 10 and 11. As shown on the figures, there are four (4) 1-acre exposure areas that have a mirex concentration above the cleanup goal of 1.0 mg/kg.

⁷ Previous discrete sampling results were not used in developing exposure area concentrations. The PDI sampling was designed to provide reliable surface weighted average concentrations consistent with the ROD cleanup goals and so replace previous sampling results.

11

3.4 MFLBC Fish Tissue Analytical Results

Ohio EPA's laboratory homogenized the samples, and analyzed a total of 12 fillet, 12 offal, and 1 whole body⁸ samples for mirex and percent lipids. Analytical results for fish tissue samples are provided in Table 9.

3.4.1 Discussion of Fillet and Offal Mirex and Lipid Results

Mirex concentrations in fillet samples ranged from non-detect (at the upstream sampling location) to 1.22 mg/kg. Out of 12 fillet samples analyzed, eight had mirex concentrations below Ohio's unrestricted consumption advisory level of 0.2 mg/kg. Two of the four samples that exceeded 0.2 mg/kg were fillet samples from common carp that were above the target size range, suggesting that these fish have been in the system for more than 5 years, and so they may not be representative of current exposure conditions. For example, the highest fillet mirex concentration (1.22 mg/kg) was detected in the common carp sample from RM 33.3, which was a composite sample that included two fish greater than 580 millimeters (mm) long, which is over 30% longer than the 5-year old size limit specified by Ohio EPA for common carp (440 mm). The arithmetic average mirex concentration in fillet samples (using ½ the detection limit for the non-detect results) is 0.272 mg/kg, while the average concentration excluding the highest common carp sample result is 0.186 mg/kg, below the unrestricted consumption level. A graph showing maximum detected fillet mirex concentrations throughout the MFLBC in multiple sampling events is provided as Figure 13. Figure 14 compares fillet results from 2005 and 2010 from the same species and sampling locations and shows lower concentrations in 2010 in every case, even for common carp that exceeded the approximately 5-year old size.

Lipid content in fillet samples ranged from 0.437% to 3.31%. Lipid content was not strongly correlated with mirex concentration. The fillet sample with the highest lipid content was from a common carp collected near Lisbon Dam (at RM 12.5), which is in an area with very low mirex concentration in sediment; as a result, mirex concentrations in fish are also low.

Offal results typically had both higher lipid content and higher mirex concentrations, as expected. Mirex concentrations in offal samples ranged from non-detect (at the upstream sample location) to 3.38 mg/kg. Similar to the fillet samples, the highest mirex concentration occurred in the common carp sample from RM 33.3, which was well above the 5-year old size limit targeted for collection in the PDI. Lipid content in offal samples ranged from 1.18% to 8.69%.

Leila

⁶ The yellow bullhead fish collected at RM 36.7 were too small to fillet, so this sample was submitted as a whole body fish tissue sample.

3.4.2 Whole Body Fish Tissue Concentrations

Whole body fish tissue concentrations were calculated using the formula below:

$$WBC = \frac{(FC \times FM) + (OC \times OM)}{(FM + OM)}$$

where:

WBC = whole body concentration (lipid or mirex) (mg/kg or %)

FC = concentration in the fillet sample (mg/kg or %)

FM = total mass of the fillet sample (kg)

OC = concentration in the offal sample (mg/kg or %)

OM = total mass of the offal sample (kg)

Fillet and offal mass were recorded both in the field and at the analytical laboratory. Table 10 provides a summary of the measured mass of each sample. As shown on the table, there was generally very good correlation between field-measured and laboratory-measured masses. For the purpose of whole body concentration calculations, the more precise laboratory-reported mass values were used. Table 11 provides the calculated whole body fish tissue mirex concentrations and % lipids. An example of the calculation for mirex is provided below for white suckers at RM 33.3.

White Sucker Fillet at RM 33.3 (FT10-33.3-WS-F)

Mirex \rightarrow FC = 0.130 mg/kg

White Sucker Offal at RM 33.3 (FT10-33.3-WS-O)

Mass \rightarrow FM = 0.292 kg

Mirex \rightarrow OC = 1.02 mg/kg

Mass \rightarrow OM = 0.890 kg

WBC (mirex) = (0.130 * 0.292 + 1.02 * 0.890) / (0.292 + 0.890) = (0.94576 mg)/(1.182 kg) = 0.800 mg/kg

Table 11 also provides values for whole body-to-fillet mirex and lipid ratios. These ratios suggest a strong correlation (correlation coefficient = 0.80 for detected results) between the lipid and mirex ratios, which is to be expected given that mirex tends to partition into lipids. In other words, the ratio of whole body mirex concentration to fillet mirex concentration is strongly correlated with the ratio of lipid content between whole body and fillets from the same fish.

Out of 13 calculated whole body concentrations, only one exceeds the Lowest Observed Adverse Effect Level (LOAEL)-based target tissue concentration based on ecological risk (1.54 mg/kg), which was the basis for establishing the sediment cleanup goal in the ROD. The one sample that was above 1.54 mg/kg was from a common carp sample that was well above the target size range, indicating that this carp is not representative of current fish exposures. A graph showing maximum detected whole body fish mirex concentrations throughout the MFLBC in multiple sampling events is provided as Figure 15.

4.0 CONCLUSIONS

The Pre-Design Investigation achieved the goals of providing comprehensive physical and chemical data to design a remedial action that will achieve remedial action objectives for OU-3. In addition, the results of the PDI show that there has been significant natural recovery within the system over the past 5 years since the last sampling event. The following conclusions can be drawn regarding sediment, floodplain soil, and fish tissue:

- Sediment: A single 1-mile exposure unit within MFLBC exceeds the Site-specific SWAC cleanup goal of 0.5 mg/kg mirex. The reach that exceeds 0.5 mg/kg extends from RM 34.5 to RM 35.4, although the concentration is driven by two sampling areas at RM 34.9 and RM 35.4. Removal of sediment at RM 35.4 will bring the SWAC concentration in this river mile to below the cleanup goal.
- Floodplain Soil: There are four 1-acre exposure units in the floodplain of the MFLBC that have mirex concentrations exceeding the Site-specific SWAC cleanup goal of 1.0 mg/kg. These four exposure units are driven by six half-acre composite sampling areas. Removal of these six half-acre areas will achieve the cleanup goal throughout the floodplain.
- Fish: With the exception of one common carp sample at RM 33.3, all whole body fish tissue mirex concentrations were below the LOAEL-based target tissue concentration to achieve acceptable ecological risk. Excluding that same common carp sample, which was not representative of current exposure conditions, the average mirex concentration in fish fillet tissue is below the unlimited consumption level of 0.200 mg/kg specified by Ohio EPA's fish tissue advisory program. In addition, fillet samples collected in 2010 show significant decreases in mirex concentrations compared to the same species collected in 2005 at the same locations.

5.0 REFERENCES

Ohio EPA 2004. State of Ohio Cooperative Fish Tissue Monitoring Program Fish Collection Guidance Manual.

Golder, 2010. PDI Work Plan for Operable Unit 3 Nease Chemical Company Salem Ohio. Golder Associates, August 2010.

32.1

32.2

32.3

1

2

Table 1 MFLBC Sediment Sampling Program Summary PDI Technical Memorandum Nease Chemical Site OU3. Columbiana and Mahoning Counties. Ohio

PDI	Work Plan Anticipated Sa	ampling Program	Field Sampling Program		
River Mile ¹ Anticipated Number of Composite Fine-Grained Sediment Samples		Notes	Samples Collected	Sampling Date	Explanation of Deviations
31.1	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/8/10	East side of stream had only one small area of fine-grained sediment, while the western side had several locations. The one small area on the eastern side was near one of the sediment locations on the western side, so it was incorporated into the sample from the western side.
31.2	1		1 fine-grained	Wed. 9/8/10	none
31.3	2	one sample from 0-6" and one sample from 6-12"	1 fine-grained	Wed. 9/8/10	Deeper material was significantly coarser than originally described during the reconnaissance in 2009, so a deeper sample was not collected.
31.4	1	`	1 fine-grained	Wed. 9/8/10	none
31.5	•	no fine-grained sediment identified in this segment	0	Wed. 9/8/10	none
31.6	-	no fine-grained sediment identified in this segment	0	Wed. 9/8/10	none
31.7	1		1 fine-grained	Wed. 9/8/10	none
31.8	2	one sample from 0-6" and one sample from 6-12"	1 fine-grained	Wed. 9/8/10	Deeper material was significantly coarser than originally described during the reconnaissance in 2009, so a deeper sample was not collected.
31.9	2	one sample from 0-6" and one sample from 6-12"	1 coarse sample	Wed. 9/8/10	Fine-grained sediment sample planned, but encountered only sand-dominated sediment. Sample collected, but will be archived as coarse sample.
32.0	i		1 fine-grained, 1 coarse	Wed. 9/8/10	Coarse-grained sample collected due to significant deposit of fine-grained sediment slightly upstream under bridge.
32.1		no fine-grained sediment identified	1 fine-grained	Thurs. 9/9/10	Additional, small area of fine-grained

1 fine-grained

1 fine-grained

1 fine-grained

Thurs. 9/9/10

Thurs. 9/9/10

Thurs. 9/9/10

sediment encountered and sampled.

none One sample was anticipated in the "new"

channel dug by property owner, but current

conditions are coarse sand.

in this segment

one sample from each side along

stream bank

Table 1 MFLBC Sediment Sampling Program Summary **PDI Technical Memorandum**

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

PDI Work Plan Anticipated Sampling Program			Field Sampling Program		
River Mile ¹ Anticipated Number of Composite Fine-Grained Sediment Samples		Notes	Samples Collected	Sampling Date	Explanation of Deviations
32.4	no fine-grained sediment identified in this segment		0	Thurs. 9/9/10	none
32.5	-	no fine-grained sediment identified in this segment	0	Thurs. 9/9/10	none
32.6	-	no fine-grained sediment identified in this segment	0	Thurs. 9/9/10	none
32.7	-	no fine-grained sediment identified in this segment	0	Thurs. 9/9/10	none
32.8	-	no fine-grained sediment identified in this segment	0	Thurs. 9/9/10	none
32.9	1		1 fine-grained, 1 coarse	Thurs. 9/9/10	selected for coarse-grained sample because in area of historically high mirex in floodplain
33.0	1	·	1 fine-grained	Thurs. 9/9/10	none
33.1	2	one sample from each side along stream bank	1 fine-grained, plus 1 duplicate	Thurs. 9/9/10	Significant deposit along downstream left bank and a very small pocket of a thin layer on downstream right bank. The small area was simply incorporated into the sample (not large enough to justify a separate sample)
33.2	1		1 fine-grained	Mon. 9/13/10	none
33.3	-	no fine-grained sediment identified in this segment	0	Mon. 9/13/10	none
33.4	-	no fine-grained sediment identified in this segment	0	Mon. 9/13/10	none
33.5	1	Although fine-grained sediment was not identified in this segment during the Reconnaissance, one sample will be collected for confirmation purposes based on the detection of mirex in the 2005 sampling event.	1 fine-grained	Mon. 9/13/10	none
33.6	1		1 fine-grained	Mon. 9/13/10	Majority of sediment was along right-hand side of stream (deepest depth = 2")

Table 1 MFLBC Sediment Sampling Program Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

PDI Work Plan Anticipated Sampling Program			Field Sampling Program		
River Mile ¹	Anticipated Number of Composite Fine-Grained Notes Samples Collected Sampling Date Sediment Samples		Explanation of Deviations		
33.7	-	no fine-grained sediment identified in this segment	1 fine-grained, plus 1 duplicate	Mon. 9/13/10	Fine-grained sediment was encountered in this reach during the PDI, so a sample was collected
33.8	1		1 fine-grained, 1 coarse	Mon. 9/13/10	Location selected for coarse-grained sample
33.9	1		1 fine-grained	Mon. 9/13/10	none
34.0	-	no fine-grained sediment identified in this segment	0	Mon. 9/13/10	none
34.1	-	no fine-grained sediment identified in this segment	0	Mon. 9/13/10	none
34.2	1		0	Mon. 9/13/10	No fine-grained sediment bodies present
34.3	1		0	Mon. 9/13/10	No fine-grained sediment bodies present
34.4	2	one sample from each side along stream bank	1 fine-grained	Tues. 9/14/10	Majority of sediment was along downstream left-hand side of stream, so all areas were composited into one sample
34.5	1		1 fine-grained	Tues. 9/14/10	none
34.6	2	one sample from each side along stream bank	1 fine-grained	Tues. 9/14/10	Majority of sediment was along downstream left-hand side of stream, so all areas were composited into one sample
34.7	1		0	Tues. 9/14/10	No fine-grained sediment bodies present
34.8	1		1 fine-grained plus 1 MS/MSD (double volume)	Tues. 9/14/10	none
34.9	1		1 fine-grained	Tues. 9/14/10	none
35.0	1		0	Tues. 9/14/10	No fine-grained sediment bodies present
35.1	3	one sample from each side along stream bank, plus one deep sample from 6-12"	1 fine-grained	Tues. 9/14/10	Majority of sediment was along downstream right-hand side of stream and the deepest depth encountered was 2"
35.2	1 .		1 fine-grained	Tues. 9/14/10	Majority of sediment was along downstream left-hand side of stream, so all areas were composited into one sample

Table 1 MFLBC Sediment Sampling Program Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

PDI V	PDI Work Plan Anticipated Sampling Program			Field Sampling Program		
River Mile ¹	Anticipated Number of Composite Fine-Grained Sediment Samples	Notes	Samples Collected	Sampling Date	Explanation of Deviations	
35.3	35.3		0	Tues. 9/14/10	Not enough sediment to sample; small amount of silt with some fine sand downstream from outfall, but likely a continuation of same sediment body as the one sampled in RM 35.2	
35.4	-	no fine-grained sediment identified in this segment	1 coarse sample	Tues. 9/14/10	This location selected for coarse-grained sediment sample given historic detections of mirex in this general area	
35.5	-	no fine-grained sediment identified in this segment	К	endall property - no a	ccess agreement	
35.6	-	no fine-grained sediment identified in this segment	К	endall property - no a	ccess agreement	
35.7	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/15/10	Majority of sediment was along downstream right-hand side of stream	
35.8	1		1 fine-grained	Wed. 9/15/10	none	
35.9	1		1 fine-grained	Wed. 9/15/10	none	
36.0	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/15/10	Majority of sediment was along downstream left-hand side of stream, so all areas were composited into one sample	
36.1	1		1 fine-grained, plus 1 duplicate, 1 coarse	Wed. 9/15/10	none; this area selected for coarse-grained sediment sample	
36.2	1		1 fine-grained plus 1 MS/MSD (triple volume)	Wed. 9/15/10	попе	
36.3	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/15/10	Majority of sediment was along downstream left-hand side of stream, so all areas were composited into one sample	
36.4	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/15/10	Majority of sediment was along downstream left-hand side of stream, so all areas were composited into one sample	
36.5	1		S	tainer property - no a	ccess agreement	
36.6	-	no fine-grained sediment identified in this segment	Stainer property - no access agreement			

MFLBC Sediment Sampling Program Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

PDI Work Plan Anticipated Sampling Program			Field Sampling Program		
River Mile ¹	Anticipated Number of Composite Fine-Grained Sediment Samples	Notes	Samples Collected	Sampling Date	Explanation of Deviations
36.7	36.7 2 one sample from each side along stream bank		1 fine-grained	Tues. 9/14/10	Majority of sediment was along left-hand side of stream (deepest depth = 2"), including two 20' areas
36.8	2	one sample from each side along stream bank	S	chrader property - no	access agreement
36.9	2	one sample from each side along stream bank	S	chrader property - no	access agreement
37.0	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/15/10	Even amount of sediment along both sides of stream, but relatively straightforward access for both sides
37.1	1		1 fine-grained	Wed. 9/15/10	none
37.2	2	one sample from each side along stream bank	1 fine-grained	Wed. 9/15/10	Even amount of sediment along both sides of stream, but relatively straightforward access for both sides
37.3	2	one sample from each side along stream bank	1 fine-grained plus 1 MS/MSD (triple volume) Thurs. 9/16/10		Majority of sediment was along downstream right-hand side of stream, so all areas were composited into one sample
37.4	1		1 fine-grained	Thurs. 9/16/10	none
37.5	1	:	1 fine-grained, plus 1 duplicate	Thurs. 9/16/10	none
37.6	1		1 fine-grained, 1 coarse	Thurs. 9/16/10	none

Notes:

(1) The stream has been segmented into 0.1 RM lengths and river mile designations refer to the entire 0.1 RM segment starting with the given river mile point and extending downstream to the next river mile point. For example, the 0.1 RM segment from RM 35.4 to RM 35.3 has been assigned a RM value of 35.4, representing the upstream end of the segment.

Table 2 MFLBC Fine-Grained Sediment Sub-Sample Location Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

RM	Sediment Point ID	Associated Composite Sample ID	Easting (ft)	Northing (ft)
31.1	SD10-31.1R-01		2426076	477736
31.1	SD10-31.1R-02		2426085	477754
31.1	SD10-31.1R-03	SD10-31.1R	2426083	477775
31.1	SD10-31.1R-04	30 10-31.1K	2426096	477784
31.1	SD10-31.1R-05		2426084	477804
31.1	SD10-31.1R-06		2426115	477820
31.2	SD10-31.2-03	-	2426161	478100
31.2	SD10-31.2L-01	SD10-31.2L	2426150	478117
31.2	SD10-31.2L-02	3D10-31.2L	2426162	478113
31.2	SD10-31.2L-04		2426099	478137
31.3	SD10-31.3L-03		2425638	478145
31.3	SD10-31.3R-01		2425876	478206
31.3	SD10-31.3R-02	SD10-31.3R	2425840	478310
31.3	SD10-31.3R-04	30 IU-31.3K	2425616	478121
31.3	SD10-31.3R-05		2425596	478134
31.3	SD10-31.3R-06		2425480	478205
31.4	SD10-31.4R-01		2425326	478271
31.4	SD10-31.4R-02	SD10-31.4R	2425276	478187
31.4	SD10-31.4R-03	3D10-31.4K	2425071	478084
31.4	SD10-31.4R-04		2425023	478196
31.7	SD10-31.7L-01	· · · · · · · · · · · · · · · · · · ·	2424207	478027
31.7	SD10-31.7L-02		2424091	478010
31.7	SD10-31.7L-03	SD10-31.7L	2424074	478014
31.7	SD10-31.7L-04	·	2424048	478021
31.7	SD10-31.7L-05		2423894	478026
31.8	SD10-31.8L-01		2423764	478157
31.8	SD10-31.8L-02	SD10-31.8	2423754	478199
31.8	SD10-31.8L-03	3010-31.0	2423736	478216
31.8	SD10-31.8R-01		2423669	478132
32.0	SD10-32.0L-01	** •	2422790	478354
32.0	SD10-32.0L-02	SD10-32.0	2422565	478439
32.0	SD10-32.0R-01		2422499	478447
32.1	SD10-32.1R-01	SD10-32.1R	2422283	478641
32.2	SD10-32.2L-01	SD10-32.2L	2421894	478948
32.3	SD10-32.3L-01		2421696	478995
32.3	SD10-32.3L-02		2421642	479000
32.3	SD10-32.3L-03	SD10-32.3L	2421608	479013
32.3	SD10-32.3L-04	3D 10-32.3E	2421589	479006
32.3	SD10-32.3L-06		2421515	478984
32.3	SD10-32.3R-04		2420626	475949

Table 2 MFLBC Fine-Grained Sediment Sub-Sample Location Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

RM	Sediment Point ID	Associated Composite Sample ID	Easting (ft)	Northing (ft)
32.9	SD10-32.9L-02		2421356	476530
32.9	SD10-32.9R-01	SD10-32.9C	2421310	476765
33.0	SD10-33.0R-01	SD10-33.0R	2421286	476059
33.1	SD10-33.1-04		2420827	476249
33.1	SD10-33.1L-01		2420989	476304
33.1	SD10-33.1L-02		2420876	476279
33.1	SD10-33.1L-03	SD10-33.1L	2420862	476272
33.1	SD10-33.1L-05		2420805	476238
33.1	SD10-33.1L-06	•	2420828	476215
33.2	SD10-33.2L-01		2420765	476205
33.2	SD10-33.2L-02		2420717	476170
33.2	SD10-33.2L-03		2420706	476149
33.2	SD10-33.2L-04	SD10-33.2L	2420659	476105
33.2	SD10-33.2L-06	·	2420629	476044
33.2	SD10-33.2L-07		2420601	475971
33.2	SD10-33.2L-08		2420555	475880
33.2	SD10-33.2R-01		2420657	476022
33:2	SD10-33.2R-02	0040 00 0	2420657	475996
33.2	SD10-33.2R-03	SD10-33.2L	2420628	475969
33.2	SD10-33.2R-04		2420553	475748
33.5	SD10-33.5L-01		2420015	474893
33.5	SD10-33.5L-02		2419828	474974
33.5	SD10-33.5L-03	SD10-33.5	2419806	474967
33.5	SD10-33.5R-01	3010-33.5	2419923	474924
33.5	SD10-33.5R-02	a	2419851	474956
33.5	SD10-33.5R-03		2419759	474953
33.6	SD10-33.6L-01		2419209	474859
33.6	SD10-33.6L-02		2419166	474820
33.6	SD10-33.6R-01	SD10-33.6R	2419540	474901
33.6	SD10-33.6R-02	3D 10-33.0K	2419528	474898
33.6	SD10-33.6R-03		2419167	474728
33.6	SD10-33.6R-04		2419164	474726
33.7	SD10-33.7R-01	SD10-33.7R	2419027	474200
33.7	SD10-33.7R-02	OD 10-00,710	2419099	474191
33.8	SD10-33.8L-01	SD10-33.8R	2419034	473867
33.8	SD10-33.8R-01		2419220	474110
33.9	SD10-33.9R-01		2419026	473622
33.9	SD10-33.9R-02	SD10-33.9R	2419032	473654
33.9	SD10-33.9R-03		2418957	473447

Table 2 MFLBC Fine-Grained Sediment Sub-Sample Location Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

RM	Sediment Point ID.	Associated Composite Sample ID	Easting (ft)	Northing (ft)
34.4	SD10-34.4L-01		2416794	472636
34.4	SD10-34.4L-02	SD10-34.4L	2416438	472444
34.4	SD10-34.4L-03	3D10-34.4L	2416445	472377
34.4	SD10-34.4R-01		2416698	472554
34.5	SD10-34.5R-01	SD10-34.5R	2416863	472084
34.6	SD10-34.6L-01		2416831	471898
34.6	SD10-34.6L-02	SD10-34.6L	2416753	471745
34.6	SD10-34.6L-03		2416865	471591
34.8	SD10-34.8R-01	SD10 24 9B	2416796	471277
34.8	SD10-34.8R-02	SD10-34.8R	2416663	470982
34.9	SD10-34.9L-01		2416456	470942
34.9	SD10-34.9L-02	SD10-34.9L	2416434	470921
34.9	SD10-34.9L-03	SD10-34.9L	2416330	470837
34.9	SD10-34.9R-01		2416404	470862
35.1	SD10-35.1L-01		2416472	469907
35.1	SD10-35.1R-01	SD10-35.1R	2416515	470008
35.1	SD10-35.1R-02	5D10-35.1K	2416506	469968
35.1	SD10-35.1R-03		2416506	469921
35.2	SD10-35.2L-01		2416265	469459
35.2	SD10-35.2L-02	SD10-35.2L	2416248	469456
35.2	SD10-35.2R-01	3D10-33.2L	2416190	469422
35.2	SD10-35.2R-02		2416174	469418
35.7	SD10-35.7R-01	SD10-35.7R	2415130	467873
35.9	SD10-35.9R-01	SD10-35.9R	2415354	467376
36.0	SD10-36.0L-01		2415411	467149
36.0	SD10-36.0L-02	SD10-36.0L	2415537	466999
36.0	SD10-36.0L-02		2415417	467048
36.1	SD10-36.1L-01	SD10-36.1L	2415227	466734
36.1	SD10-36.1L-02	3D 10-30. TL	2415239	466699
36.2	SD10-36.2R-01	SD10-36.2R	2415362	465995
36.3	SD10-36.3L-01	· · · -	2415269	465886
36.3	SD10-36.3L-02	SD10-36.3L	2415244	465893
36.3	SD10-36.3L-03	0 D 10-00.0L	2415168	465955
36.3	SD10-36.3R-01		2415198	465901
36.4	SD10-36.4L-01		2414874	466241
36.4	SD10-36.4L-02		2414820	466234
36.4	SD10-36.4L-03	SD10-36.4L	2414755	466093
36.4	SD10-36.4L-04		2414591	465985
36.4	SD10-36.4R-01		2414787	466088

Table 2 MFLBC Fine-Grained Sediment Sub-Sample Location Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

RM	Sediment Point ID	Associated Composite Sample ID	Easting (ft)	Northing (ft)		
36.7	SD10-36.6L-01		2415162	464939		
36.7	SD10-36.6L-02		2415181	464856		
36.7	SD10-36.6L-03		2415180	464734		
36.7	SD10-36.6L-04		2415202	464653		
36.7	SD10-36.6L-05	SD10-36.6L	2415202	464599		
36.7	SD10-36.6L-06		2415193	464510		
36.7	SD10-36.6R-01		2415203	464717		
36.7	SD10-36.6R-02		2415231	464635		
36.7	SD10-36.6R-03		2415228	464608		
37.0	SD10-37.0L-01	· · · · · · · · · · · · · · · · · · ·	2415105	463482		
37.0	SD10-37.0L-02	·	2415065	463474		
37.0	SD10-37.0L-03		2415023	463445		
37.0	SD10-37.0L-04	SD10-37.0	2414617	463248		
37.0	SD10-37.0R-01		2415087	463457		
37.0	SD10-37.0R-02	,	2414820	463394		
37.0	SD10-37.0R-03		2414765	463359		
37.1	SD10-37.1R-01	SD10-37.1R	2414492	462992		
37.2	SD10-37.2L-01		2414480	462941		
37.2	SD10-37.2L-02	SD10-37.2	2414486	462892		
37.2	SD10-37.2R-01	3010-37.2	2414576	462531		
37.2	SD10-37.2R-02		2414692	462475		
37.3	SD10-37.3R-01		2414711	462412		
37.3	SD10-37.3R-02	SD10-37.3R	2414808	462154		
37.3	SD10-37.3R-03	3010-37.31	2414817	461927		
37.3	SD10-37.3R-04		2414832	461879		
37.4	SD10-37.4L-01		2414780	461571		
37.4	SD10-37.4L-02		2414795	461684		
37.4	SD10-37.4L-03	SD10-37.4R	2414775	461450		
37.4	SD10-37.4L-04		2414755	461422		
37.4	SD10-37.4R-01		2414822	461623		
37.5	SD10-37.5L-01		2414717	461112		
37.5	SD10-37.5L-02	SD10-37.5R	2414662	461068		
37.5	SD10-37.5R-01	05 10-07.0K	2414755	461327		
37.5	SD10-37.5R-02		2414704	461093		
37.6	SD10-37.6L-01		2414571	460502		
37.6	SD10-37.6R-01	SD10-37.6	2414626	460700		
37.6	SD10-37.6R-02	0. 10 - 01 UG	2414616	460578		
37.6	SD10-37.6R-03		2414557	460454		

Coordinates shown are NAD 1983 State Plane, Ohio North.

Table 3 MFLBC Floodplain Soil Sample Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

	<u>-</u>	,			·	
Quarter-Acre Sample	Approximate Area (acres)	Analyzed?	Associated Half-Acre Sample	Approximate Area (acres)	Analyzed?	
FPS10-001-01	0.28	NO	FPS10-001	0.61	YES	
FPS10-001-02	0.33	NO	FF510-001	0.01	ILO	
FPS10-002-01	0.31	YES	None	None	Not Collected	
FPS10-003-01	0.35	NO	FPS10-003	0.65	YES	
FPS10-003-02	0.31	NO	FF310-003	0.65	123	
FPS10-004-01	0.30	NO	FPS10-004	0.60	YES	
FPS10-004-02	0.30	NO	FF310-004	0.00	11.0	
FPS10-005-01	0.25	NO	FPS10-005	0.51	YES	
FPS10-005-02	0.26	NO	FF310-005	0.51	123	
FPS10-006-01	0.24	NO	FPS10-006	0.48	YES	
FPS10-006-02	0.24	NO	17310-000	0.40	123	
FPS10-007-01	0.23	NO	FPS10-007	0.48	YES	
FPS10-007-02	0.25	NO	17310-007	0.40	120	
FPS10-008-01	0.25	YES	None	None	Not Collected	
FPS10-008-02	0.25	YES	None	None	140t Collected	
FPS10-010-01	0.28	NO	FPS10-010	0.54	YES	
FPS10-010-02	0.26	NO	17310-010	0.54	120	
FPS10-011-01	0.26	NO	FPS10-011	0.53	YES	
FPS10-011-02	0.27	NO	17310-011	0.55	123	
FPS10-012-01	0.27	NO	FPS10-012	0.55	YES	
FPS10-012-02	0.27	NO	11-010-012	0.55	120	
FPS10-013-01	0.25	NO	FPS10-013	0.48	YES	
FPS10-013-02	0.24	NO	11010-013	0.40	150	
FPS10-014-01	0.26	NO	FPS10-014	0.52	YES	
FPS10-014-02	0.25	NO	11010014	U.U.Z	120	
FPS10-015-01	0.27	NO	FPS10-015	0.54	YES	
FPS10-015-02	0.27	NO	11010010	0.01	120	
FPS10-016-01	0.25	NO	FPS10-016	0.51	YES	
FPS10-016-02	0.26	NO	11010010			
FPS10-017-01	0.25	NO	FPS10-017	0.53	YES	
FPS10-017-02	0.28	NO				
FPS10-018-01	0.24 NO		FPS10-018	0.50	YES	
FPS10-018-02	0.26	NO	7. 0.0010		. 20	
FPS10-019-01	0.33	NO	FPS10-019	0.64	YES	
FPS10-019-02	0.31	NO				
FPS10-020-01	0.32	NO	FPS10-020	0.65	YES	
FPS10-020-02	0.33	NO		<u> </u>	. 20	
FPS10-021-01	0.25	NO	FPS10-021	0.51	YES	
FPS10-021-02				J.J.	159	

Table 3 MFLBC Floodplain Soil Sample Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Quarter-Acre Sample	Approximate Area (acres)	Analyzed?	Associated Half-Acre Sample	Approximate Area (acres)	Analyzed?	
FPS10-022-01	0.29	NO 1	ED040.000	0.55	٧٣٥	
FPS10-022-02	0.25	NO	FPS10-022	0.55	YES	
FPS10-023-01	0.28	NO	EDC40 022	0.56	VEC	
FPS10-023-02	0.28	NO	FPS10-023	0.56	YES	
FPS10-024-01	0.32	NO	EDC40.024	0.62	VEC	
FPS10-024-02	0.31	NO	FPS10-024	0.62	YES	
FPS10-025-01	0.31	NO	EDC10 03E	0.56	NO	
FPS10-025-02	0.24	NO	FPS10-025	0.56	NO	
FPS10-026-01	0.31	NO	EDC40.006	0.50	NO	
FPS10-026-02	0.19	NO	FPS10-026	0.50	NO	
FPS10-027-01	0.26	NO	EDC40 007	0.53	VEC	
FPS10-027-02	0.27	NO	FPS10-027	<u> </u>	YES	
FPS10-028-01	0.26	NO	EDC40 000	0.51	VEC	
FPS10-028-02	0.25	NO	FPS10-028	0.51	YES.	
FPS10-029-01	0.25	NO	EDS10 020	0.50	VEC	
FPS10-029-02	0.25	NO	FPS10-029	, 0.50	YES	
FPS10-030-01	0.25	NO	FPS10-030	0.50	YES	
FPS10-030-02	0.25	NO	FPS 10-030	0.50	TES	
FPS10-031-01	0.25	NO	FPS10-031	0.51	YES	
FPS10-031-02	0.25	NO	FP310-031	0.51	TES	
FPS10-032-01	0.25	NO	FPS10-032	0.49	YES	
FPS10-032-02	0.24	NO	FP310-032	0.49	TES	
FPS10-033-01	0.25	NO	FPS10-033	0.49	YES	
FPS10-033-02	0.24	NO	FFS 10-033		120	
FPS10-034-01	0.26	NO	FPS10-034	0.51	YES	
FPS10-034-02	0.26	NO	1 F 3 10-034	0.51	123	
FPS10-035-01	0.25	NO	FPS10-035	0.50	YES	
FPS10-035-02	0.25	NO	11 010-000		120	
FPS10-036-01	0.26	NO	FPS10-036	0.50	YES	
FPS10-036-02	0.24	NO	11010-000	0.00	120	
FPS10-037-01	0.24	NO	FPS10-037	0.50	YES	
FPS10-037-02	0.26	NO	. 1 0 10-007		120	
FPS10-038-01	0.25	NO	FPS10-038	0.50	YES	
FPS10-038-02	0.25	NO	11 010-000	<u> </u>	120	
FPS10-039-01	0.25	NO	FPS10-039	0.50	YES	
FPS10-039-02	0.25	NO	71 010-009		YES	
FPS10-040-01	0.24	NO	FPS10-040	0.50	YES	
FPS10-040-02	0.27	NO	11010-040	0.00	120	
FPS10-041-01	0.25	NO	FPS10_041	Λ 5 1	VES	

Table 3 MFLBC Floodplain Soil Sample Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Quarter-Acre Sample	Approximate Area (acres)	Analyzed?	Associated Half-Acre Sample	Approximate Area (acres)	Analyzed?	
FPS10-041-02	0.25	NO	11010-0-71	0.01	120	
FPS10-042-01	0.27	NO	ED040.040	0.50	٧٢٥	
FPS10-042-02	0.26	NO	FPS10-042	0.53	YES.	
FPS10-043-01	0.25	NO	ED040.042	0.54	VEC	
FPS10-043-02	0.25	NO	FPS10-043	0.51	YES	
FPS10-044-01	0.25	NO	FPS10-044	0.40	VEC	
FPS10-044-02	0.24	NO	FPS10-044	0.49	YES	
FPS10-045-01	0.24	NO	EDC40 045	0.49	VEC	
FPS10-045-02	0.25	NO	FPS10-045	0.48	YES	
FPS10-046-01	0.26	NO	FPS10-046	0.51	YES	
FPS10-046-02	0.26	NO	FP310-046	0.51	150	
FPS10-047-01	0.23	NO	FPS10-047	0.47	YES	
FPS10-047-02	0.24	NO	FF310-047	0.47	123	
FPS10-048-01	0.20	NO	FPS10-048	0.41	YES	
FPS10-048-02	0.21	NO	FF310-040	0.41	ILO	
FPS10-049-01	0.23	NO	FPS10-049	0.47	NO	
FPS10-049-02	0.23	NO	FF310-049	0.47	NO	
FPS10-050-01	0.24	NO	FPS10-050	0.46	NO	
FPS10-050-02	0.23	NO	FF310-030	0.40	NO	
FPS10-051-01	0.23	NO	FPS10-051	0.48	NO	
FPS10-051-02	0.25	NO	1 P 3 10-03 1	0.40	140	
FPS10-052-01	0.29	NO ·	FPS10-052	0.59	NO	
FPS10-052-02	0.30	NO	FF310-032	0.59	140	
FPS10-053-01	0.26	NO	FPS10-053	0.51	YES	
FPS10-053-02	0.25	NO	11-310-033	0.51	120	
FPS10-054-01	0.24	NO	FPS10-054	0.48	YES	
FPS10-054-02	0.24	NO .	11010-05-	0.40	120	
FPS10-055-01	0.26	NO	FPS10-055	0.54	NO	
FPS10-055-02	0.28	NO	11 010-000	0.04	140	
FPS10-056-02	0.23	NO	FPS10-056	0.50	YES	
FPS10-056-02	0.23	NO	71 010-000	0.00	120	
FPS10-057-01	0.27	NO	FPS10-057	0.53	YES	
FPS10-057-02	0.26	NO	11 010-037	0.00	120	
FPS10-058-01	0.26	NO	FPS10-058	0.52	YES	
FPS10-058-02	0.26	NO	11 010-050	0.02	120	
FPS10-059-01	0.26	NO	FPS10-059	0.53	NO	
FPS10-059-02	0.27	NO	71 010-009	<u> </u>	140	
FPS10-060-01	0.26	NO	FPS10-060	0.53	NO	
FPS10-060-02						

Table 3 MFLBC Floodplain Soil Sample Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Quarter-Acre Sample	Approximate Area (acres)	Analyzed?	Associated Half-Acre Sample	Approximate Area (acres)	Analyzed?
FPS10-061-01	0.28	NO	FPS10-061	0.55	NO
FPS10-061-02	0.27 NO		FF310-001	0.55	NO
FPS10-062-01	0.28	NO	FPS10-062	0.54	NO
FPS10-062-02	0.26	NO	FF310-002	0.54	NO
FPS10-063-01	0.32	NO	FPS10-063	0.57	NO
FPS10-063-02	0.26	NO	FF310-003	0.57	140
FPS10-064-01	0.22	NO	FPS10-064	0.41	NO ·
FPS10-064-02	0.20	NO	FF310-004	0.41	140
FPS10-065-01	0.27	NO	FPS10-065	0.52	NO
FPS10-065-02	0.26	NO	FF310-005	0.52	140
FPS10-066-01	0.25	NO	FPS10-066	0.50	YES
FPS10-066-02	0.25	NO	FF310-000	υ <u>.</u> ου	TEO

Table 4 MFLBC Fish Sample Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

River Mile	Site Name	Date Sampled	Time Sampled	Species	Fish Length (mm)	Fish Weight (g)	Interpreted Age Based on Length/Age Data Provided by Ohio EPA	Length Percentile Based on Ohio EPA State-Wide Fish Sampling Database	Field Weight of Filet (g)	Field Weight of Offal (g)	Sample IDs F = Fillet O = Offal	Notes	Latitude/ Longitude
		7.4		YB	306	518	>=3yr and <=5yr	>50th%	110	408	FT10-12.5-YB-F, FT10-12.5-YB-O	Only captured one yellow bullhead. Sample was NOT selected for laboratory analsis.	Upstream:
			300	WS	365	458	>=3yr and <=5yr	>50th%					N 40°46'38.1"
				WS	354	405	>=3yr and <=5yr	>50th%			FT40 40 5 1410 F		W 80°46'59.1"
	25.			WS	349	355	>=3yr and <=5yr	>50th%	466	1505	FT10-12.5-WS-F, FT10-12.5-WS-O		Downstream:
	7.1. 2.55			WS	369	449	>=3yr and <=5yr	>50th%		7 192 2	1110-12.5-445-0		N 40°46'25.8"
12.5	Lisbon Dam	9/13/10	14:25	WS	347	415	>=3yr and <=5yr	>50th%		7			W 80°46'46.0"
	F 53 14 - 13		100	CC	442	1700	>5 yr	>50th%		5 2 7 70	心理 型艺法 上海		
	1 1 TO 1			CC	430	2000	>=3yr and <=5yr	>50th%		4200	FT40 40 5 00 5	Two separate bags of offal from the common	
	61 1/2 8			CC	412	1500	>=3yr and <=5yr	>50th%	1675		FT10-12.5-CC-F, FT10-12.5-CC-O	carp. First four were females, last one was	
		6-4-5		CC	420	1725	>=3yr and <=5yr	>50th%		3000	1110-12.5-00-0	male.	Part Sales of the Sales
	and and			CC	445	1925	>5 yr	>50th%		3000			
				YB	255	238	>=3yr and <=5yr	>50th%			FT40 20 0 VP F		Upstream:
				YB	190	97	>=3yr and <=5yr	<25th%	105	352	FT10-32.0-YB-F, FT10-32.0-YB-O		N 40°58'10.6"
			1 5 1	YB	215	131	>=3yr and <=5yr	>50th%		St. Bulletin	1110-32.0-10-0		W 80°51'31.5"
				WS	290	227	<3 yr	>50th%		k - 1			Downstream:
			3 * 1 * 1	WS	302	312	<3 yr	>50th%			FT10-32.0-WS-F,		N 40°58'9.6"
32.0	SR 45	9/13/10	18:00	WS	297	248	<3 yr	>50th%	351	905	FT10-32.0-WS-F,		W 80°51'27.7"
			+	WS	291	249	<3 yr	>50th%		2 4			
			2	WS	303	231	<3 yr	>50th%		1 1			
				CC	311	436	>=3yr and <=5yr	25th-50th%			FT10-32.0-CC-F,	First was male, two largest were females &	1
	i i			CC	479	2175	>5 yr	>50th%	958	3625	FT10-32.0-CC-P,	above desired size range.	11
				CC	521	2275	>5 yr	>50th%				above desired size range.	
				YB	183	95	<3 yr	<25th%	N/A	95	FT10-33.3-YB-O	Only one yellow bullhead, insufficient tissue to fillet. Submitted as whole body sample, but this sample was NOT selected for laboratory analysis.	Upstream:
			d .	WS	327	343	>=3yr and <=5yr	>50th%					N 40°57'31.9"
	Middletown			WS	299	260	<3 yr	>50th%			FT40 22 2 14/0 F		W 80°51'59.9"
33.3	Road	9/14/10	09:15	WS	279	279	<3 yr	25th-50th%	322	924	FT10-33.3-WS-F, FT10-33.3-WS-O	2	Downstream:
				WS	273	196	<3 yr	25th-50th%	1		1110-33.3-443-0		N 40°57'32.4"
			1 1 1	WS	266	176	<3 yr	25th-50th%	25.5				W 80°51'51.4"
				CC	522	2400	>5 yr	>50th%	1 1 1/2 1		FT40.00.0.00.5		
				CC	581	2525	>5 yr	>50th%	1525	5225	FT10-33.3-CC-F, FT10-33.3-CC-O	First was female, others male. All above desired size.	
				CC	588	2850	>5 yr	>50th%			1110-33.5-00-0	desiled size.	300.00 (30.00
				YB	248	263	>=3yr and <=5yr	>50th%	04	200	FT10-35.4-YB-F,		Upstream:
				YB	192	105.	>=3yr and <=5yr	<25th%	84	290	FT10-35.4-YB-O		N 40°56'31.3"
		4	5.0	WS	291	232	<3 yr	>50th%	44	1 2 2 2 2			W 80°53'03.8"
35.4	Colonial Villa	9/14/10	12:00	WS	287	236	<3 yr	25th-50th%	7 7 47		FT40 0F 4 140 F		Downstream:
		1.51		WS	272	238	<3 yr	25th-50th%	295	810	FT10-35.4-WS-F, FT10-35.4-WS-O		N 40°56'40.1"
				WS	291	248	<3 yr	>50th%			110-55.4-445-0		W 80°52'42.5"
				WS	272	200	<3 yr	25th-50th%					

Table 4 MFLBC Fish Sample Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

River Mile	Site Name	Date Sampled	Time Sampled	Species	Fish Length (mm)	Fish Weight (g)	Interpreted Age Based on Length/Age Data Provided by Ohio EPA	Length Percentile Based on Ohio EPA State-Wide Fish Sampling Database	Field Weight of Filet (g)	Field Weight of Offal (g)	Sample IDs F = Fillet O = Offal	Notes	Latitude/ Longitude
				YB	306	518	>=3yr and <=5yr	>50th%	110	408	FT10-12.5-YB-F, FT10-12.5-YB-O	Only captured one yellow bullhead. Sample was NOT selected for laboratory analsis.	Upstream:
				ws	365	458	>=3yr and <=5yr	>50th%					N 40°46'38.1"
				WS	354	405	>=3yr and <=5yr	>50th%					W 80°46'59.1"
				WS	349	355	>=3yr and <=5yr	>50th%	466	1505	FT10-12.5-WS-F, FT10-12.5-WS-O		Downstream:
				WS	369	449	>=3yr and <=5yr	>50th%		AND THE STREET	F110-12.5-VV3-0		N 40°46'25.8"
12.5	Lisbon Dam	9/13/10	14:25	WS	347	415	>=3yr and <=5yr	>50th%					W 80°46'46.0"
				CC	442	1700	>5 yr	>50th%					
	N			CC	430	2000	>=3yr and <=5yr	>50th%		4200	FT40 40 F 00 F	Two separate bags of offal from the common	
4 1			1874 J. V	CC	412	1500	>=3yr and <=5yr	>50th%	1675		FT10-12.5-CC-F, FT10-12.5-CC-O	carp. First four were females, last one was	
			194 39	CC	420	1725	>=3yr and <=5yr	>50th%		3000	1110-12.5-00-0	male.	
		7 2 2 1		CC	445	1925	>5 yr	>50th%	7 TO 80 PT	3000			
				YB	255	238	>=3yr and <=5yr	>50th%	W 77 7 1 7 1 9		FT40 00 0 VP 5		Upstream:
				YB	190	97	>=3yr and <=5yr	<25th%	105	352	FT10-32.0-YB-F, FT10-32.0-YB-O		N 40°58'10.6"
Y M				YB	215	131	>=3yr and <=5yr	>50th%	4 3 3		1110-32.0-1B-O		W 80°51'31.5"
				WS	290	227	<3 yr	>50th%	5 4 4 E				Downstream:
				WS	302	312	<3 yr	>50th%			FT40 20 0 14/0 F		N 40°58'9.6"
2.0	SR 45	9/13/10	18:00	WS	297	248	<3 yr	>50th%	351	905	FT10-32.0-WS-F, FT10-32.0-WS-O		W 80°51'27.7"
. 1				WS	291	249	<3 yr	>50th%			1110-02.0-440-0		1.7
				WS	303	231	<3 yr	>50th%					1 1
				CC	311	436	>=3yr and <=5yr	25th-50th%	e vicini		FT10-32.0-CC-F.	First was male too learnest was familie 9	
e e				CC	479	2175	>5 yr	>50th%	958	3625	FT10-32.0-CC-F,	First was male, two largest were females & above desired size range.	
		1		CC	521	2275	>5 yr	>50th%	17517 443	100 P 40 - 6	1110 02.0 00 0	above desired size range.	1 1 1 1 1 1 1 1 1 1
				YB	183	95	<3 yr	<25th%	N/A	95	FT10-33.3-YB-O	Only one yellow bullhead, insufficient tissue to fillet. Submitted as whole body sample, but this sample was NOT selected for laboratory analysis.	Upstream:
		E/		WS	327	343	>=3yr and <=5yr	>50th%					N 40°57'31.9"
1.38	Middletown			WS	299	260	<3 yr	>50th%			FT40 00 0 14/0 F		W 80°51'59.9"
3.3	Road	9/14/10	09:15	WS	279	279	<3 yr	25th-50th%	322	924	FT10-33.3-WS-F, FT10-33.3-WS-O		Downstream:
÷ 1				WS	273	196	<3 yr	25th-50th%			1110-55.5-445-0		N 40°57'32.4"
				WS	266	176	<3 yr	25th-50th%					W 80°51'51.4"
	2 ,			CC	522	2400	>5 yr	>50th%			E-10.00.0.00.E		
	2			CC	581	2525	>5 yr	>50th%	1525	5225	FT10-33.3-CC-F, FT10-33.3-CC-O	First was female, others male. All above desired size.	
		** A **		CC	588	2850	>5 yr	>50th%			1110-33.3-00-0	desiled size.	
		7		YB	248	263	>=3yr and <=5yr	>50th%	04	200	FT10-35.4-YB-F,		Upstream:
	7.77			YB	192	105 ·	>=3yr and <=5yr	<25th%	84	290	FT10-35.4-YB-O		N 40°56'31.3"
1				WS	291	232	<3 yr	>50th%		S. 191 -		35 4-WS-F	W 80°53'03.8"
5.4	Colonial Villa	9/14/10	12:00	WS	287	236	<3 yr	25th-50th%		1 1 2 13	FT40 0F 4 1410 F		Downstream:
	The street of		-12. A	WS	272	238	<3 yr	25th-50th%	295	810	FT10-35.4-WS-F, FT10-35.4-WS-O	N 40°56'40.1"	
		8 1	12.12	WS	291	248	<3 yr	>50th%	100		1110-33.4-443-0		W 80°52'42.5"
				WS	272	200	<3 yr	25th-50th%			A March Land		

Table 4 MFLBC Fish Sample Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

River Mile	Site Name	Date Sampled	Time Sampled	Species	Fish Length (mm)	Fish Weight (g)	Interpreted Age Based on Length/Age Data Provided by Ohio EPA	Length Percentile Based on Ohio EPA State-Wide Fish Sampling Database	Field Weight of Filet (g)	Field Weight of Offal (g)	Sample IDs F = Fillet O = Offal	Notes	Latitude/ Longitude
196			100	YB	203	118	>=3yr and <=5yr	25th-50th%	N/A	158	FT10-36.7-YB-O	Too little to filet; composited two fish into a	Upstream:
				YB	153	40	<3 yr	<25th%	IVA	150	F110-30.7-1B-0	whole body sample.	N 40°55'48.3"
	Discolate.			WS	282	227	<3 yr	25th-50th%					W 80°52'59.7"
36.7	Pine Lake Road	9/14/10	15:30	WS	264	232	<3 yr	25th-50th%			FT40.26.7 IMC F		Downstream:
	Noau			WS	266	196	<3 yr	25th-50th%	252	742	FT10-36.7-WS-F, FT10-36.7-WS-O	Last fish below desired size limit	N 40°55'54.0"
25				WS	265	212	<3 yr	25th-50th%			1110-30.7-443-0		W 80°53'00.1"
STATE L			800 Page 1	WS	251	148	<3 yr	<25th%					
-				WS	302	358	<3 yr	>50th%	Upstream:				
				ws	263	168	<3 yr	25th-50th%					N 40°55'12.2" W 80°53'07.4"
37.5	Allen Rd.	9/14/10	17:00	WS	230	167	<3 yr	<25th%	239	715	FT10-37.5-WS-F, FT10-37.5-WS-O	Last three fish below desired size limit	Downstream:
				ws	233	158	<3 yr	<25th%			1110-37.5-443-0		N 40°55'18.6" W 80°53'06.0"
1097				WS	228	125	<3 yr	<25th%					
	THE SHALL			WS	242	142	<3 yr	<25th%		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 CO 10 10 10		Upstream:
				ws	210	100	<3 yr	<25th%					N 40°54'40.0" W 80°52'45.8"
38.4	WWTP	9/15/10	08:30	WS	210	94	<3 yr	<25th%	150	365	FT10-38.4-WS-F, FT10-38.4-WS-O	All fish below desired size limit	Downstream:
		9/13/10 08.30	ws	198	106	<3 yr	<25th%			F110-30.4-VVS-O		N 40°54'43.8" W 80°52'48.2"	
				WS	208	99	<3 yr	<25th%			- No. 1877 79		

Highlighted rows indicate samples that were NOT selected for laboratory analysis.

Table 5 MFLBC Validated Sediment Analytical Results Summary PDt Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

					Parameter		Mirex		Total C	Organic (Carbon	Percent Solids	Gravel Content	Sand Content	Fines Content (Silt + Clay)
					Unit		mg/kg			mg/kg		percent	percent	percent	percent
Composite Sample Area	Sample ID	Start Depth (in)	End Depth* (in)	Sample Type	Sample Date	Result	Qual	RL	Result	Qual	-RL	Result	Result	Result	Reşuit
SD10-31.1R	SD10-31.1R-0-2	0	2	N	9/8/2010	0.086	J	0.037	15,000	_	420	58.9	0.0	64.1	35.9
SD10-31.2L	SD10-31.2L-0-4	0	4	N	9/8/2010	0.19	J	0.055	10,000		620	40.3	0.0	69.2	30.8
SD10-31.3R	SD10-31.3R-0-6	0	6	N	9/8/2010	0.026	J	0.0084	4,500		480	52.4	3.0	47.4	49.6
SD10-31.4R	SD10-31.4R-0-6	0	6	N	9/8/2010	0.6	J	0.32	6,300		360	69.2	0.1	61.2	38.7
SD10-31.7L	SD10-31.7L-0-4	0	4	_ N	9/8/2010	0.08	J	0.037	13,000		420	60.0	0.1	64.1	35.8
SD10-31.8	SD10-31.8-0-4	0	4	N	9/8/2010	0.034	J	0.02	14,000		450	55.8	0.0	54.9	45.1
SD10-31.9C	SD10-31.9C-0-4	0	4	N	9/8/2010	NA			ND	U	330	76.0	NA	NA	NA
SD10-32.0	SD10-32.0-0-6	0	6	N	9/8/2010	0.11	J	0.047	20,000		2700	47.0	0.0	36.7	63.3
SD10-32.0C	SD10-32.0C-0-3	0	3	N	9/8/2010	NA			540	J	330	74.7	NA	NA	NA
SD10-32.1R	SD10-32.1R-0-1	0	1	N	9/9/2010	0.077	J	0.028	32,000		630	39.5	0.5	34.5	65.0
SD10-32.2L	SD10-32.2L-0-1	0	1	N	9/9/2010	0.037	J	0.01	26,000		580	42.9	0.1	22.5	77.4
SD10-32.3L	SD10-32.3L-0-6	0	6	N	9/9/2010	0.056	J	0.023	23,000		530	47.3	0.0	24.5	75.5
SD10-32.9C	SD10-32.9C-0-3	0	3	N	9/9/2010	NA			2,300		360	69.3	NA NA	NA	NA
SD10-32.9R	SD10-32.9R-0-3	00	3	N	9/9/2010	0.11	J	0.046	9,600		520	48.2	5.6	38.7	55.7
SD10-33.0R	SD10-33.0R-0-2	0	2	N	9/9/2010	0.057	J	0.029	20,000		3400	37.3	3.3	33.8	62.9
SD10-33.1L	SD10-33.1L-0-4	0	4	N	9/9/2010	0.17	J	0.096	29,000		550	45.6	0.0	33.7	66.3
SD10-33.1L	SD10-DUP-01	0	4	FD	9/9/2010	0.25	J	0.1	29,000		570	43.9	0.4	25.6	74.0
SD10-33.2L	SD10-33.2L-0-6	0	6	N	9/13/2010	0.12		0.039	11,000		440	56.4	0.0	50.2	49.8
SD10-33.5	SD10-33.5-0-4	0	4	N	9/13/2010	0.3	•	0.082	18,000		470	53.6	4.3	57.2	38.5
SD10-33.6R	SD10-33.6R-0-2	0	2	Z	9/13/2010	0.56		0.083	15,000		470	52.9	0.0	55.6	44.4
SD10-33.7R	SD10-33.7R-0-3	0	3	N	9/13/2010	0.16	J	0.042	21,000		470	53.0	0.3	46.7	53.0
SD10-33.7R	SD10-DUP2	0	3	FD	9/13/2010	0.041	J	0.0038	16,000		430	58.5	0.0	47.2	52.8
SD10-33.8C	SD10-33.8C-0-2	0	2	N	9/13/2010	0.13		0.057	2,500		330	76.5	0.3	95.9	3.7
SD10-33.8R	SD10-33.8R-0-3	0	3	N	9/13/2010	0.17		0.055	11,000		620	40.3	0.0	30.3	69.7
SD10-33.9R	SD10-33.9R-0-4	0	4	N	9/13/2010	0.26		0.099	27,000		560	44.3	0.0	29.3	70.7
SD10-34.4L	SD10-34.4L-0-3	0	3	N	9/14/2010	0.016		0.0043	16,000		490	50.8	0.0	52.0	48.0
SD10-34.5R	SD10-34.5R-0-7	0	7	N	9/14/2010	ND	U	0.0026	3,000		290	85.7	15.5	35.9	48.6
SD10-34.6L	SD10-34.6L-0-3	0	3	N	.9/14/2010	0.19		0.085	17,000		480	51.7	0.1	53.5	46.4
SD10-34.8R	SD10-34.8R-0-3	0	3	N	9/14/2010	0.18		0.093	24,000		530	47.4	0.0	30.8	69.2
SD10-34.9L	SD10-34.9L-0-2	0	2	N	9/14/2010	0.83		0.36	19,000		410	60.6	0.0	57.1	42.9

Table 5 MFLBC Validated Sediment Analytical Results Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

					Parameter		Mirex		Total C	Organic Carbon	Percent Solids	Gravel Content	Sand Content	Fines Content (Silt + Clay)
					Unit		mg/kg			mg/kg	percent	percent	percent	percent
Composite Sample Area	Sample ID	Start Depth (in)	End Depth* (in)	Sample Type	Sample Date	Result	Qual	RL.	Result	Qual RL	Result	Result	Result -	Result
SD10-35.1R	SD10-35.1R-0-2	0	2	N	9/14/2010	0.12		0.047	23,000	540	46.3	0.0	45.4	54.6
SD10-35.2L	SD10-35.2L-0-1	0	1	N	9/14/2010	0.17		0.047	23,000	540	46.5	0.4	45.9	53.7
SD10-35.4C	SD10-35.4C-0-4	0	4	N	9/14/2010	1.1		0.3	3,500	340	73.9	1.8	92.9	5.3
SD10-35.7R	SD10-35.7R-0-2	0	2	N	9/15/2010	0.13		0.043	12,000	480	51.8	0.0	59.6	40.4
SD10-35.8R	SD10-35.8R-0-1	0	1	Ņ	9/15/2010	0.21		0.04	14,000	460	54.5	0.4	48.5	51.1
SD10-35.9R	SD10-35.9R-0-2	0	2	N	9/15/2010	0.13		0.056	32,000	640	39.1	0.0	24.7	75.4
SD10-36.0L	SD10-36.0L-0-2	0	2	N	9/15/2010	0.1		0.05	21,000	570	43.9	0.0	39.8	60.2
SD10-36.1C	SD10-36.1C-0-3	0	3	_ N	.9/15/2010	NA			3,200	340	. 72.5	NA	NA	NA
SD10-36.1L	SD10-36.1L-0-1	0	1	N	9/15/2010	0.069	J	0.029	33,000	670	37.6	0.0	16.3	83.7
SD10-36.1L	SD10-DUP3	0	1	FD	9/15/2010	0.29	J	0.058	34,000	660	38.1	0.0	15.1	84.9
SD10-36.2R	SD10-36.2R-0-1	0	1	N	9/15/2010	0.14		0.042	23,000	480	52.5	0.0	36.7	63.3
SD10-36.3L	SD10-36.3L-0-1	0	1	N	9/15/2010	0.065		0.026	31,000	590	42.2	0.0	27.8	72.2
SD10-36.4L	SD10-36.4L-0-2	0	2	N	9/15/2010	0.12		0.041	17,000	470	53.1	0.0	47.4	52.6
SD10-36.6L	SD10-36.6L-0-2	0	2	N	9/14/2010	0.54		0.087	15,000	490	50.8	. 0.0	54.8	45.2
SD10-37.0	SD10-37.0-0-2	0	2	N	9/15/2010	0.024		0.009	20,000	510	48.9	0.0	53.0	47.0
SD10-37.1R	SD10-37.1R-0-2	0	2	N	9/15/2010	0.075		0.033	35,000	740	33.7	0.0	15.9	84.1
SD10-37.2	SD10-37.2-0-12	0	12	N	9/15/2010	0.037	J	0.012	35,000	700	35.6	0.0	22.9	77.1
SD10-37.3R	SD10-37.3R-0-6	0	6	N	9/16/2010	0.19		0.065	37,000	740	33.7	0.6	38.4	61.0
SD10-37.4R	SD10-37.4R-0-4	0	4	N	9/16/2010	0.26	·	0.068	43,000	1600	32.2	0.8	30.0	69.2
SD10-37.5R	SD10-37.5R-0-6	0	6	N	9/16/2010	0.8	. J	0.068	48,000	1600	32.2	0.1	15.7	84.2
SD10-37.5R	SD10-DUP4	0	6	FD	9/16/2010	0.35	J	0.067	49,000	1500	32.8	NA NA	NA	NA
SD10-37.6	SD10-37.6-0-3	0	3	N	9/16/2010	ND	U	0.0047	21,000	540	46.7	0.2	46.5	53.3
SD10-37.6C	SD10-37.6C-0-2	0	2	N	9/16/2010	ŅA			1,600	350	71.1	NA	NA	NA

Notes:

N = normal

FD = field duplicate

Qual = validated qualifier

RL = laboratory reporting limit

in = inches

mg/kg = milligrams per kilogram

ND = Not Detected

NA = not analyzed - For archived samples that were not analyzed for mirex, TOC was analyzed so that holding times for that parameter could be achieved. Grain size distribution was not analyzed for these samples because there is no holding time limitation.

Qualifiers:

U = not detected above RL

J = estimated result

^{*} End depth specified is the bottom depth of the deepest sub-sample included in the composite sample.

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD09-31.1-1	POINT	31.1	Brown/grey sandy SILT, medium gravel, organics, no odor	5	5	NA NA	25.0	
SD09-31.1-2	POINT	31.1	Brown/grey sandy SILT, medium gravel, organics, no odor	15	5	NA NA	75.0	
SD10-31.1R-01	POINT	31.1	Sandy SILT with some fine gravel	10	50	NA NA	500.0	Area covers points 01 through 04
SD10-31.1R-03	POINT	31.1	SILT with some fine sand and gravel	NA NA	NA -	NA	NA	Covered by point 01
SD10-31.1R-04	POINT	31.1	SILT with some fine sand and gravel	NA.	NA	NA.	NA	Covered by point 01
SD10-31.1R-06	POINT	31.1	Small area behind tree on left	1	1	NA .	1.0	
SD10-31,2L-01	POINT	31.2	SILT with some very fine sand	NA NA	NA	26	NA	
SD10-31.2L-04	POINT	31.2	Emergent	NA	NA	NA .	NA	Area data not recorded, minor compared to rest of areas in river mile
SD09-31.3-1	POINT	31.3	Brown SAND, medium gravel, no odor, organics	NA	NA	NA .	NA	Not fine-grained sediment body.
SD09-31.3-2	POINT	31.3	Dark brown, SILT, trace sand, organics, no odor	NA	NA .	N A	NA	Area data not recorded, minor compared to rest of areas in river mile
SD09-31.3-4	POINT	31.3	Brown/grey SILT, trace sand, no odor	10	2	NA NA	20.0	
SD09-31.3-5	POINT	31.3	CLAY (appears to be part of formation, not stream sediment)	NA	NA	NA NA	NA	Not fine-grained sediment body.
SD10-31.3L-03	POINT	31.3	Sandy SILT trace fine gravel	2	12	NA NA	24.0	
SD10-31.3R-01	POINT	31.3	SILT trace fine sand	30	NA	NA	708.5	circle
SD10-31.3R-02	POINT	31.3	Silty medium SAND	2	2	NA	4.0	
SD10-31.3R-04	POINT	31.3	Small pocket	2	2	NA NA	4.0	
SD10-31.3R-05	POINT	31.3	SILT with some fine sand	NA NA	NA	NA NA	NA	Covered by SD09-31.3-4
SD10-31.3R-06	POINT	31.3	SILT with some fine sand, trace gravel	NA	NA	25	NA	•
SD10-31.4R-01	POINT	31.4	SILT and CLAY with some sand	NA	NA	NA	NA	Area data not recorded, minor compared to rest of areas in river mile
SD10-31.4R-02	POINT	31.4	Silty fine SAND trace gravel	2	2	NA	4.0	
SD10-31.4R-03	POINT	31.4	Silty fine SAND	3	3	NA NA	9.0	
SD10-31.4R-04	POINT	31.4	Sandy SILT	10	20	NA NA	200.0	
SD09-31.7-1	POINT	31.7	Brown/grey sandy SILT, medium to fine gravel, organics, no odor	NA	NA	22	NA	
SD09-31.7-3	POINT	31.7	Brown/grey sandy SILT, medium to fine gravel, organics, no odor	NA	NA	24	NA	
SD10-31.7L-01	POINT	31.7	Silty fine SAND	3	2	NA NA	6.0	
SD10-31.7L-03	POINT	31.7	SILT with some fine sand	35	5	NA NA	NA	Area represents points 03 & 04

1D	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD10-31.7L-04	POINT	31.7	SILT with some fine sand	NA	NA	NA NA	NA	Covered by point 03
SD10-31.7L-05	POINT	31.7	Sandy SILT	NA NA	NA	NA NA	NA	Covered by polygon 23
SD09-31.8-1	POINT	31.8	Brown silty SAND, medium gravel trace organics, no odor	NA	NA	19	NA	Not fine-grained sediment body.
SD09-31.8-2	POINT	31.8	Brown silty SAND, medium gravel, trace organics, no odor	NA	NA	20	NA	Not fine-grained sediment body.
SD10-31.8L-01	POINT	31.8	Silty fine SAND	NA .	NA	21	NA	
SD10-31.8L-02	POINT	31.8	Silty fine SAND trace gravel	2	2	NA	4.0	
SD10-31.8L-03	POINT	31.8	SILT with fine sand	15	20	NA NA	300.0	
SD10-31.8R-01	POINT	31.8	Silty fine SAND trace gravel	3	3	NA	9.0	
SD09-31.9-1	POINT	31.9	Brown silty SAND, medium to fine gravel, no odor	NA	NA	17	NA	Not fine-grained sediment body.
SD09-31.9-2	POINT	31.9	Brown silty SAND, medium gravel trace organics, no odor	NA NA	NA	18	NA	
SD09-32.0-1	POINT	32.0	Brown fine to medium SAND, medium gravel, no odor	NA NA	NA	27	NA	Not fine-grained sediment body.
SD09-32.0-2	POINT	32.0	Brown fine silty SAND, some medium gravel, trace organics, no odor	NA	NA NA	16	NA	
SD10-32.0L-01	POINT	32.0	SILT with some fine sand	2	2	NA NA	4.0	
SD10-32.0L-02	POINT	32.0	Silty fine SAND	NA NA	NA	NA NA	NA	Not a significant fine-grained sediment body.
SD10-32.0R-01	POINT	32.0	SILT trace sand	NA NA	NA NA	27	NA	
SD10-32.1R-01	POINT	32.1	SILT with fine sand	6	15	NA NA	90.0	
SD09-32.2-1	POINT	32.2	Brown/grey SILT, trace sand, medium gravel, some organics, no odor	NA	NA	28	· NA	
SD10-32.2L-01	POINT	32.2	SILT WITH TRACE Fine sand	12	NA	NA	113.0	circle
SD09-32.3-1	POINT	32.3	Brown sandy SILT, medium gravel, loose, some organics, no odor	NA.	NA	NA NA	NA	Man-made channel, not fine- grained sediment body.
SD09-32.3-2	POINT	32.3	Grey sandy SILT, loose, some gravel, organics, no odor	NA.	NA	NA NA	NA	Included in sediment body summarized by SD10-32:3L-04
SD10-32.3L-01	POINT	32.3	SILT with some fine sand	12	20	NA NA	240.0	
SD10-32.3L-02	POINT	32.3	SILT trace fine sand	6	50	NA NA	300.0	Same as SD10-32.3-L-06, but separate area
SD10-32.3L-03	POINT	32.3	SILT trace fine sand	NA NA	NA	NA NA	NA	part of same body as 02
SD10-32.3L-04	POINT	32.3	SILT with some fine sand	50	8	NA	400.0	
SD10-32.3L-06	POINT	32.3	SILT with some fine sand	6	50	NA NA	300.0	· ·
SD09-32.9-1	POINT	32.9	Brown silty SAND, loose, fine gravel, organics, no odor	NA	NA	NA NA	NA	Not fine-grained sediment body.

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD09-32.9-2	POINT	32.9	Brown/grey sandy SILT, loose, medium to fine gravel, organics, no odor	5	7	NA	35.0	
SD09-32.9-3	POINT	32.9	Grey SILT, trace fine sand, some medium gravel, organics, no odor	10	6	NA NA	60.0	
SD10-32.9L-02	POINT	32.9	Sandy SILT	1	1	NA NA	1.0	
SD10-32.9R-01	POINT	32.9	Sandy SILT	3	3	NA NA	9.0	
SD09-33.0-1	POINT	33.0	Grey loose SILT, with some medium gravel, organics, no odor	10	2	. NA	20.0	
SD10-33,0R-01	POINT	33.0	SILT with some fine sand and gravel	1	1	NA I	1.0	
SD09-33.1-2	POINT	33.1	Grey SILT, some fine gravel, organics, no odor	2	3 ·	NA NA	6.0	
SD09-33.1-3	POINT	33.1	Brown/grey SILT, some sand, medium gravel, organics, no odor	NA	NA	NA NA	NA	Covered by polygon 30
SD10-33.1L-01	POINT	33.1	SILT with some very fine sand	6	6	NA	36.0	
SD10-33,1L-02	POINT	33.1	SILT trace fine sand	3	7.5	NA	22.5	
SD10-33.1L-03	POINT	33.1	SILT trace fine sand	3	7.5	NA	22,5	part of same body as 02
SD10-33,1L-05	POINT	33,1	SILT trace fine sand	NA NA	NA	NA	NA	Part of polygon 30
SD10-33.1L-06	POINT	33.1	Silty fine SAND	1	1	NA NA	1.0	
SD09-33.2-1	POINT	33.2	Dark brown, SILT, trace fine sand, some gravel, organics, no odor	5	10	NA NA	50.0	
SD09-33.2-2	POINT	33.2	Brown sandy SILT, some gravel, organics, no odor	NA	NA NA	NA	NA	Covered by SD10-33.2L-02
SD09-33.2-3	POINT	33.2	Grey SILT, trace fine sand, no gravel, organics; no odor	NA NA	NA	N A	NA	Not found in 2010. Covered by other 2010 samples in this river mile.
SD10-33.2L-01	POINT	33.2	Sandy SILT with some fine gravel	NA NA	NA	NA NA	NA	Not a significant fine-grained sediment body.
SD10-33,2L-02	POINT	33.2	Sandy SILT with some fine gravel	6	150	NA NA	900.0	Extends from point 02 to point 05
SD10-33.2L-03	POINT	33.2	Sandy SILT with some fine gravel	NA	NA NA	NA NA	NA	Covered by area associated with point 02
SD10-33.2L-04	POINT	33.2	Sandy SILT with some fine gravel	NA NA	NA	NA NA	NA	Covered by area associated with point 02
SD10-33.2L-05	POINT	33.2	Sandy SILT with some fine gravel	NA	NA	NA	NA	Covered by area associated with point 02
SD10-33.2L-06	POINT	33.2	Sandy SILT with some fine gravel	NA NA	NA NA	NA NA	NA	Covered by area associated with point 02
SD10-33.2L-08	POINT	33.2	Sandy SILT with some fine gravel	2	2	NA NA	4.0	small area near bank interpreted as 2 ft square, similar to others.

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD10-33,2R-01	POINT	33.2	Sandy SILT with some gravel	2	60	NA	120.0	Covering from 33.2R-01 to 33.2R- 03, 2 ft wide narrow strip
SD10-33.2R-02	POINT	33.2	Sandy SILT with some gravel	NA NA	NA	NA NA	NA	Covered by 33.2R-01
SD10-33.2R-03	POINT	33.2	SILT with some fine sand	NA NA	NA	NA .	NA	Covered by 33.2R-01
SD10-33.2R-04	POINT	33.2	SILT with some fine sand	4	20	NA	80.0	mislabeled as 32.3
SD10-33.5L-01	POINT	33.5	SILT with some fine sand	8	8	NA NA	64.0	
SD10-33.5L-02	POINT	33.5	Sandy SILT	5	5	NA	25.0	
SD10-33.5L-03	POINT	33.5	SILT with some fine sand	5	5	NA	25.0	-
SD10-33.5R-01	POINT	33.5	SILT with some fine sand and leaves	3	3	NA NA	9.0	
SD10-33,5R-02	POINT	33.5	Sandy SILT with some fine gravel	1	1	NA NA	1.0	
SD10-33,5R-03	POINT	33.5	SILT with some fine sand	10	2	NA ·	20.0	
SD09-33.6-1	POINT	33.6	Grey SILT, medium to fine gravel, organics, no odor	2	2	NA.	4.0	
SD10-33.6L-01	POINT	33.6	Sandy SILT	1	1	NA	1.0	
SD10-33.6L-02	POINT	33.6	Silty fine SAND	1	1	NA NA	1.0	
SD10-33.6R-03	POINT	33.6	SILT with some fine sand	2	4	NA NA	8.0	
SD10-33.6R-04	POINT	33.6	SILT with some fine sand	1	1	NA NA	1.0	
SD10-33,7R-01	POINT	33.7	SILT with some fine sand	1 .	1	NA NA	1,0	
SD10-33.7R-02	POINT	33.7	SILT with trace fine sand	2	6	NA NA	12.0	
SD09-33.8-1	POINT	33.8	Brown SILT, trace sand, some medium gravel, organics, no odor	3	3	NA NA	9.0	
SD09-33:8-2	POINT	33.8	Brown/grey SILT, trace fine sand, medium gravel, organics, no odor	4	7	NA	28.0	
SD10-33.8C-01	POINT	33.8	Fine to medium SAND	3	3	NA	9.0	
SD10-33.8L-01	POINT	33.8	SILT with some fine sand and gravel	4	4	NA NA	16.0	
SD10-33.8R-01	POINT	33.8	SILT with some fine sand	6	2	NA NA	12.0	
SD10-33.9R-01	POINT	33.9	SILT with some fine sand	4	10	NA NA	40.0	
SD10-33.9R-02	POINT	33.9	SILT with some fine sand	4	10	NA	40.0	
SD10-33,9R-03	POINT	33.9	SILT with some fine sand	5	20	NA ·	100.0	
SD09-34.1-1	POINT	34.1	NA NA	3	1	NA	3.0	
SD09-34.2-1	POINT	34.2	Brown/grey SILT, trace fine sand, medium gravel, organics, no odor	2	2	NA NA	4.0	
SD09-34.3-1	POINT	34.3	Brown/grey SILT, fine sand, fine gravel, organics, no odor	10	4	NA NA	40.0	
SD09-34.4-1	POINT	34.4	Brown/grey SILT, trace fine sand, fine gravel, organics, no odor	3	1	NA NA	3.0	
SD09-34.4-2	POINT	34.4	Brown/Grey SILT, some trace fine sand, some gravel, some organics, no odor	5	2	NA	10.0	

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD10-34.4L-02	POINT	34.4	Silty SAND	3	3	NA NA	9.0	
SD10-34.4L-03	POINT	34.4	SILT with some fine sand	2	2	NA	4.0	
SD10-34.4R-01	POINT	34.4	SILT with some fine sand and gravel	NA	NA	NA NA	NA	Covered by SD09-34.4-2
SD09-34.5-1	POINT	34.5	Brown/grey sandy SILT, some medium to fine gravel, organics, no odor	10	2	NA NA	20.0	
SD09-34.5-2	POINT	34.5	Brown/grey sandy SILT, some gravel, organics, no odor	1	1	NA NA	1.0	
SD10-34.5R-01	POINT	34.5	Silty CLAY with some fine sand and gravel	NA	NA	NA NA	NA	Not a fine-grained sediment body (CLAY BANK).
SD09-34.6-1	POINT	34.6	Grey SILT, trace sand, some gravel, organics, no odor	. 5	1	NA NA	5.0	
SD09-34.6-2	POINT	34.6	Grey/brown SILT, fine sand, no gravel, no organics, no odor	2	2	NA NA	4.0	
SD09-34.6-3	POINT	34.6	NA NA	2	2	NA NA	4.0	
SD09-34.6-4	POINT	34.6	NA NA	2	. 2	NA NA	4.0	
SD10-34.6L-01	POINT	34.6	Sandy SILT with some clay	3	20	NA NA	60.0	
SD10-34.6L-02	POINT	34.6	SILT with some fine sand	5	10	NA NA	50.0	
SD10-34.6L-03	POINT	34.6	Silty SAND	3	3	NA NA	9.0	·
SD09-34.8-2	POINT	34.8	Brown/grey MUCK, no gravel, organics, no odor	2	2	NA NA	4.0	
SD10-34.8R-01	POINT	34.8	SILT with some fine sand	3	20	NA NA	60.0	
SD10-34.8R-02	POINT	34.8	SILT with trace fine sand	12	20	NA NA	240.0	
SD09-34.9-2	POINT	34.9	Grey sandy SILT, medium gravel, organics, no odor	3	3	NA NA	9.0	
SD10-34.9L-01	POINT	34.9	SILT with some fine sand	10	20	NA NA	200.0	
SD10-34.9L-02	POINT	34.9	Sandy SILT	1	25	NA NA	25.0	
SD10-34.9L-03	POINT	34.9	SILT with some fine sand	10	0	NA .	0.0	Area data not recorded, minor compared to rest of areas in river mile
SD10-34.9R-01	POINT	34.9	Sandy SILT	1	1	NA NA	1.0	
SD09-35.0-1	POINT	35.0	Deep pool can't be waded across, parts feel soft but may be leaves, will need different method if want to sample.	NA	NA	NA.	NA	did not sample
SD09-35,1-1	POINT	35.1	Grey/brown MUCK, no gravel, organics, no odor	5	NA	NA NA	19.6	circle
SD09-35.1-2	POINT	35.1	Grey/brown sandy SILT, no gravel, organics, no odor	10	3	NA NA	30.0	
SD10-35.1L-01	POINT	35.1	Sandy SILT	1	1	NA NA	1.0	
SD10-35,1R-01	POINT	35.1	SILT with some fine sand	3	3	NA NA	9.0	

ID ·	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD10-35.1R-02	POINT	35.1	SILT with some fine sand	12	3	NA NA	36.0	
SD10-35.1R-03	POINT	35.1	SILT with some fine sand	1	1	NA NA	1.0	
SD09-35,2-1	POINT	35.2	Dark grey MUCK, no gravel, organics, no odor	1	1	NA NA	1.0	
SD09-35.2-3	POINT	35.2		3	3	NA NA	9.0	
SD10-35.2L-01	POINT	35.2	SILT with some fine sand	2	6	NA ·	12.0	
SD10-35.2L-02	POINT	35.2	SILT with some fine sand	2	6	NA NA	12.0	continuation of previous
SD10-35.2R-01	POINT	35.2	SILT with some fine sand	3	3	NA NA	9.0	
SD10-35.2R-02	POINT	35.2	SILT with some fine sand	NA NA	NA NA	NA NA	NA	Covered by SD09-35.2-3
SD09-35.3-1	POINT	35.3	Grey/brown sandy SILT, some medium gravel, no organics, no odor	3	2	NA NA	6.0	
SD09-35.3-2	POINT	35.3	Grey SILT, some fine gravel, no organics, no odor	3	2	NA NA	6.0	
SD10-35.3L-01	POINT	35.3	SILT	2	6	NA NA	12.0	
SD10-35.4C	POINT	35.4		NA	NA	NA NA	2,270.9	Approximate area associated with composite sample SD10-35.4C
SD10-35.6R-01	POINT	35.6	Sandy SILT	2	2	NA NA	4.0	
SD09-35.7-1	POINT	35.7	Grey silty fine SAND, no gravel, organics, no odor	2	2	NA NA	4.0	
SD09-35.7-2	POINT	35.7	Brown/grey silty fine SAND, fine gravel, organics, no odor	1	1 -	NA NA	1.0	
SD09-35.7-3	POINT	35.7	Brown/grey silty fine SAND, fine gravel, organics, no odor	10	2	NA NA	20.0	
SD10-35.7R-01	POINT	35.7	SILT with some fine sand, trace gravel	3	3	NA NA	9.0	
SD09-35.8-1	POINT	35,8	Grey/brown fine silty SAND, no gravel, no organics, no odor	5	NA	NA NA	19.6	circle
SD10-35.8R-02	POINT	35.8	Sandy SILT	2	2	NA NA	4.0	
SD10-35.9R-01	POINT	35.9	SILT with some fine sand	40	10	NA NA	400.0	
SD09-36.0-1	POINT	36	Brown/Grey silty SAND, medium to fine gravel, organics, no odor	2	7	NA NA	14.0	
SD09-36.0-2	POINT	36.0	On edge of deep pool, pool bottom mostly cobbles but upstream end has a gravelly sand with some fines, seems finer because loose.	NA	NA	NA NA	NA	Covered by SD10-36L-02
SD09-36.0-3	POINT	36,0	Brown fine silty SAND, some medium to fine gravel, some organics, no odor	1	1	NA.	1.0	
SD10-36.0L-01	POINT	36.0	Silty SAND	NA NA	, NA	NA NA	NA	Covered by SD09-36.0-1
SD10-36.0L-02	POINT	36.0	SILT with some fine sand	2	7	NA NA	14.0	
SD09-36.1-1	POINT	36.1	NA NA	2	2 .	NA NA	4.0	
SD09-36,1-2	POINT	36.1	Brown/grey SILT, loose, no gravel, no odor	8	2	NA NA	16.0	

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD09-36.1-3	POINT	36.1	Brown/grey SILT, loose, no gravel, no odor	4	2	NA NA	8.0	3
SD10-36.1L-01	POINT	36.1	SILT	3	5	NA NA	15.0	
SD10-36.1L-02	POINT	36.1	SILT with some fine sand	40	3	NA NA	120.0	
SD09-36.2-1	POINT	36.2	Grey/brown SILT, trace fine sand, fine gravel, some organics, no odor	2	2	NA NA	4.0	
SD09-36.2-2	POINT	36.2	Brown/grey SILT, trace fine sand, some fine gravel, no organics, no odor	10	2	NA NA	20.0	
SD10-36.2R-01	POINT	36.2	SILT with some fine sand	4	10	NA NA	40.0	
SD09-36.3-1	POINT	36.3	Brown/grey SILT, no gravel, some organics, no odor	3	2	NA NA	6.0	
SD09-36.3-2	POINT	36.3	Brown/grey SILT, no gravel, some organics, no odor	2	2	NA NA	4.0	,
SD09-36.3-3	POINT	36.3	Brown/grey SILT, no gravel, some organics, no odor	2	3	NA NA	6.0	
SD09-36.3-4	POINT.	36.3	Brown/grey SILT, no gravel, some organics, no odor	NA	NA	NA	NA	Not found in 2010. Covered by other 2010 samples in this river mile.
SD09-36.3-5	POINT	36.3	Brown/grey SILT, no gravel, some organics, no odor	8	1	NA .	8.0	
SD10-36.3L-01	POINT	36.3	SILT with some fine sand	2	3	NA NA	6.0	
SD10-36,3L-02	POINT	36.3	SILT with some fine sand	3	25	NA NA	75.0	
SD10-36.3L-03	POINT	36.3	SILT with some fine sand	80	3	NA NA	240.0	
SD10-36.3R-01	POINT	. 36.3	SILT with some fine sand	6	15	NA NA	90.0	
SD09-36.4-10	POINT	36.4	Brown/grey SILT, some organics, no gravel, no odor	8	2	NA NA	16.0	
SD09-36,4-11	POINT	36.4	Grey SILT loose, no gravel, some organics, no odor	30	7	NA NA	210.0	
SD09-36.4-12	POINT	36.4	aquatic vegetation	8	NA	NA NA	50.2	circle
SD09-36.4-2	POINT	36.4	Grey SILT, loose, no gravel, some organics, no odor	8	2	NA NA	16.0	
SD09-36.4-3	POINT	36.4	Brown/grey fine sandy SILT, no gravel, some organics, no odor	3	3	NA	9.0	
SD09-36.4-5	POINT	36.4	Grey SILT loose, no gravel, some organics, no odor	3	3	NA NA	9.0	
SD09-36.4-6	POINT	36.4	Grey SILT loose, no gravel, some organics, no odor	2	1	NA NA	2.0	
SD09-36.4-7	POINT	36.4	Grey SILT loose, no gravel, some organics, no odor	NA	NA	NA	NA	Not found in 2010. Covered by other 2010 samples in this river mile.

1D	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD09-36,4-9	POINT	36.4	Grey SILT loose, no gravel, some organics, no odor	15	2	NA NA	30.0	
SD10-36.4L-01	POINT	36.4	SILT with trace fine sand	2	3	NA NA	6.0	
SD10-36.4L-02	POINT	36.4	SILT with some fine sand	2	2	NA	4.0	
SD10-36.4L-03	POINT	36.4	SILT with some fine sand	3	10	NA	30.0	
SD10-36.4L-04	POINT	36.4	SILT with some fine sand	3	15	NA NA	45.0	
SD10-36,4R-01	POINT	36.4	SILT with some fine sand	5	10	NA	50.0	
SD10-36.6L-01	POINT	36.6	SILT with trace fine sand	2	40	NA ·	80.0	
SD10-36.6L-02	POINT	36.6	SILT with some fine sand	2	3	NA	6.0	
SD10-36.6L-03	POINT	36.6	SILT with some fine sand	2	10	NA NA	20.0	
SD10-36.6L-04	POINT	36.6	SILT with some fine sand	2	1	NA NA	2.0	
SD10-36.6L-05	POINT	36.6	SILT with some fine sand	2	30	NA NA	60.0	·
SD10-36.6L-06	POINT	36.6	SILT with some fine sand	1	2	NA NA	2.0	
SD10-36.6R-01	POINT	36.6	SILT with some fine sand	2	4	NA	8.0	
SD10-36,6R-02	POINT	36.6	SILT with some fine sand	3	6	NA NA	18.0	
SD10-36,6R-03	POINT	36.6	SILT with some fine sand	2	4	NA NA	8.0	
SD09-36.7-1	POINT	36.7	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	1	1	NA.	1.0	
SD09-36.7-2	POINT	36.7	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	8	2 .	NA.	16.0	
SD09-36,7-3	POINT	36.7	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	NA	NA	33	NA	
SD09-36.7-4	POINT	36.7	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	12	2	NA NA	24.0	
SD09-36.8-1	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	2	2	NA	4.0	
SD09-36.8-10	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	5	. 2	NA NA	10.0	
SD09-36.8-11	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	5	2	NA NA	10.0	
SD09-36.8-12	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	25	3	NA NA	75.0	
SD09-36.8-13	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	8	4	NA NA	32.0	
SD09-36.8-14	POINT	36.8	Grey/brown SILT, no gravel, some organics, no odor	25	8	NA NA	200.0	
SD09-36.8-2	POINT	. 36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	10	2	NA NA	20.0	

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD09-36.8-3	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	10	NA	NA NA	78,5	circle
SD09-36.8-4	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	12	2	NA NA	24.0	
SD09-36.8-5	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	5	NA	NA NA	19.6	circle
SD09-36.8-6	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	8	NA	NA NA	25.1	semicircle
SD09-36.8-7	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	25	8	NA	200.0	
SD09-36.8-8	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	12	4	NA	48.0	
SD09-36.8-9	POINT	36.8	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	3	3	NA NA	9.0	
SD09-36.9-1	POINT	36.9	Brown/grey SILT, no gravel, no organics, no odor	12	2	NA NA	24.0	
SD09-36.9-2	POINT	36.9	Grey/brown sandy SILT, fine gravel, no organics, no odor	2	2	NA NA	4.0	
SD09-36.9-3	POINT	36.9	Grey/brown SILT, trace fine sand, no gravel, organics, no odor	30	4	NA NA	105.0	2 areas combined
SD09-36.9-4	POINT	36.9	Grey SILT, no gravel, organics, no odor	3	2	NA NA	6.0	
SD09-36.9-5	POINT	36.9	Dark Grey MUCK, trace fine sand, no gravel, some organics, no odor	20	3	NA NA	60.0	
SD09-37.0-1	POINT	37.0	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	20	4	NA NA	80.0	
SD09-37.0-2	POINT	37.0	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	14	3	NA NA	46.0	2 areas combined
SD09-37.0-3	POINT	37.0	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	NA	NA	35	NA NA	
SD09-37.0-4	POINT	37.0	Grey sandy SILT, some fine gravel, no organics, no odor	3	3	NA ·	9.0	
SD10-37.0L-01	POINT	37.0	SILT with some fine sand	3	25	NA NA	75.0	
SD10-37.0L-02	POINT	37.0	SILT with some fine sand	5	10	NA NA	50.0	
SD10-37.0L-03	POINT	37.0	Sandy SILT	3	4	NA NA	12.0	
SD10-37.0L-04	POINT	37.0	SILT With trace fine sand	NA NA	NA NA	37	NA NA	
SD10-37.0R-01	POINT	37.0	SILT with some fine sand	2	3	NA NA	6.0	
SD10-37.0R-02	POINT	37.0	SILT with trace fine sand	3	3	NA NA	9.0	
SD10-37.0R-03	POINT	37.0	SILT with trace fine sand	NA NA	NA	36	NA .	

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
SD10-37.1R-01	POINT	37.1	SILT with trace fine sand	NA	NA	NA	770.4	15% coverage of entire RM 37.1 polygon
SD09-37.2-1	POINT	37.2	Grey SILT, trace fine sand, no gravel, no odor	10	4	NA NA	20.0	50 % covered
SD09-37.2-2	POINT	37.2	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	6	3	NA NA	18.0	
SD09-37.2-3	POINT	37.2	Brown/Grey sandy SILT, no gravel, organics, no odor	1	1	NA NA	1.0	
SD09-37.2-4	POINT	37.2	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	5	5	NA NA	25.0	
SD09-37.2-5	POINT	37.2	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	2	15	NA.	30.0	
SD10-37.2L-01	POINT	37.2	SILT with trace fine sand	7	7	NA NA	49.0	
SD10-37.2L-02	POINT	37.2	SILT with trace fine sand	NA	NA	NA NA	NA	Not a significant fine-grained sediment body. Covered by other polygons in area.
SD10-37.2R-01	POINT	37.2	SILT with trace sand	NA	NA	42	NA	
SD10-37.2R-02	POINT	37.2	SILT with trace fine sand	NA NA	NA	NA NA	NA	Not a fine-grained sediment body (note of odor).
SD09-37.3-1	POINT	37.3	Grey SILT, trace fine sand, fine gravel, organics, no odor	4	4	NA NA	16.0	
SD09-37.3-2	POINT	37.3	NA	18	175	NA NA	630.0	20% coverage
SD09-37.3-3	POINT	37.3	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	NA	NA	NA NA	NA	Replaced by SD10-37.3R-02
SD09-37.3-4	POINT	37.3	Brown/grey sandy SILT, medium to fine gravel, no organics, no odor	4	2	NA	8.0	
SD09-37.3-5	POINT	37.3	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	2	2	NA NA	4.0	
SD10-37.3R-01	POINT	37.3	SILT with trace fine sand	NA NA	NA	42	NA	20% coverage
SD10-37.3R-02	POINT	37.3	SILT with trace fine sand	15	5	NA NA	75.0	
SD10-37.3R-03	POINT	37.3	Sandy SILT	1	10	NA NA	10.0	
SD09-37.4-1	POINT	37.4	Grey/brown MUCK, no gravel, no organics, no odor	3	5	NA .	15.0	
SD10-37.4L-01	POINT	37.4	SILT with trace sand	3	3	NA NA	9.0	
SD10-37.4L-02	POINT	37.4	Sandy SILT	1	5	NA NA	5.0	
SD10-37.4L-03	POINT	37.4	SILT with some fine sand	2	4	NA NA	8.0	
SD10-37.4L-04	POINT	37.4	SILT	NA NA	NA NA	NA NA	NA	Covered by RM 37.5 areas
SD10-37.4R-01	POINT	37.4	SILT with some fine sand	2	3	NA NA	6.0	
SD09-37.5-1	POINT	37.5	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	40	5	NA NA	200.0	

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	- NOTES
SD09-37.5-2	POINT	37.5	Grey MUCK, no gravel, organics, no odor	4	7	NA NA	28.0	
SD09-37.5-3	POINT	37.5	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	30	5	NA NA	150.0	
SD09-37.5-4	POINT	37.5	Grey SILT, trace fine sand, no gravel, no odor	15	3	NA NA	45.0	
SD10-37.5L-01	POINT	37.5	SILT with trace fine sand	NA NA	NA	NA NA	NA	Covered by SD09-37.5-3
SD10-37.5L-02	POINT	37.5	SILT with some fine sand	25	5	NA NA	125.0	
SD10-37.5R-01	POINT	37.5	SILT with some fine sand	3	25	NA NA	75.0	
SD10-37.5R-02	POINT	37.5	SILT with some fine sand	25	5	NA NA	125.0	
SD09-37.6-1	POINT	37.6	Grey/brown SILT, trace fine sand, no gravel, no organics, no odor	35	8	NA NA	280.0	
SD10-37.6L-01	POINT	37.6	SILT with trace fine sand	2	2	NA NA	4.0	
SD10-37.6R-01	POINT	37.6	SILT with trace fine sand	3	15	NA NA	45.0	
SD10-37.6R-02	POINT	37.6	SILT with some fine sand	1	1	NA NA	1.0	
SD10-37.6R-03	POINT	37.6	SILT with trace fine sand	10	1	NA NA	10.0	
26	POLYGON	31.2				NA NA	218.8	
25	POLYGON	31.3	·			NA NA	273.7	
22	POLYGON	31.7				NA	282.5	
23	POLYGON	31.7		NA NA	NA	NA NA	5.3	
24	POLYGON	31.7				NA NA	30.9	
21	POLYGON	31.8				NA NA	71.4	
17	POLYGON	31.9				NA NA	77.5	
18	POLYGON	31.9				NA NA	812.2	
16	POLYGON	31.9				NA NA	311.7	
28	POLYGON	32.2				NA NA	104.9	
29	POLYGON	32.2		NA NA	NA	NA NA	135.0	
27	POLYGON	32				NA NA	2,420.2	
33	POLYGON	36.7				NA NA	84.3	
35	POLYGON	37.0	Sediment caught in aquatic vegetation	NA NA	NA NA	NA NA	283.7	
36	POLYGON	37	10% of polygon has fine-grained sediment.			NA NA	241.9	
37	POLYGON	37	10% of polygon has fine-grained sediment, 70% of polygon is in this river mile.			NA NA	166.1	
37	POLYGON	37.1	10% of polygon has fine-grained sediment, 30% of polygon is in this river mile.			NA	71.2	
38	POLYGON	37.1	aquatic vegetation	NA.	NA	NA NA	230.0	
39	POLYGON	37.1	aquatic vegetation	NA NA	NA NA	NA NA	245.8	
40	POLYGON	37.1	Silty material under bridge	NA	NA	NA NA	147.0	
41	POLYGON	37.1	Silty material under bridge	NA NA	NA	NA NA	139.2	

ID	POINT or POLYGON	RIVER MILE	DESCRIPTION	LENGTH (FT)	WIDTH (FT)	ASSOCIATED POLYGON ID	SURFACE AREA (FT²)	NOTES
42	POLYGON	37.2			7,07,107,00,000,00	NA NA	48.4	-
43	POLYGON	37.4	Silty aquatic vegetation	NA	NA NA	NA NA	260.4	
44	POLYGON	37.4	Silty aquatic vegetation, extends upstream along bank 35 ft, 3 ft wide	NA	NA	NA NA		Drawn polygon plus additional 3x35 extension.
45	POLYGON	37.5	Silty aquatic vegetation approx area	NA NA	NA	NA NA	374.1	
46	POLYGON	37.6	Area along bank of silty aquatic vegetation. strong organic odor	NA	NA	NA NA	628.0	
48	POLYGON	37.6	aquatic vegetation	NA	NA	NA.	162.7	

NA = Not Applicable.

Table 7 MFLBC Mirex SWACs for Sediment PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

River Mile Reach	Mirex SWAC (mg/kg)
31.1 - 32.0	0.106
32.1 - 33.0	0.0565
33.1 - 34.0	0.164
34.5 - 35.4	0.899
35.6 - 36.5	0.127
36.7 - 37.6	0.219

Table 8 MFLBC Validated Floodplain Soil Analytical Results Summary PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

			Parameter		Mirex		Total C	rganic Ca	arbon	Solids, Percent	Gravel Content	Sand Content	Fines Content (Silt + Clay)
			Unit		mg/kg			mg/kg		percent	percent	percent	percent
Composite Sample Location	Sample ID	Sample Type	Sample Date	Result	Qual	RL	Result	Qual	RL	Result	Result	Result	Result
FPS10-001	FPS10-001	N	9/20/2010	0.014		0.0038	16,000	J	440	57.4	0.0	39.0	61.0
FPS10-001	FPS10-001	FD	9/20/2010	0.0086		0.004	12,000	J	450	55.0	NA	NA	NA
FPS10-002-01	FPS10-002-01	N	9/20/2010	0.56		0.03	14,000		340	72.9	1.1	40.6	58.3
FPS10-003	FPS10-003	N	9/20/2010	0.45		0.03	16,000		340	74.0	0.9	51.2	47,9
FPS10-004	FPS10-004	N	9/21/2010	0.51		0.038	22,000		430	58.1	0.0	42.2	57.8
FPS10-005	FPS10-005	N	9/21/2010	0.17		0.048	13,000		550	45.8	0.0	35.3	64.7
FPS10-006	FPS10-006	N	9/21/2010	0.30		0.029	13,000		330	75.3	6.8	52.4	40.8
FPS10-007	FPS10-007	N	9/21/2010	0.60		0.026	8,000		300	83.3	1.1	72.3	26.6
FPS10-008-01	FPS10-008-01	N	9/21/2010	0.090		0.028	11,000		320	77.6	0.9	57.3	41.8
FPS10-008-02	FPS10-008-02	N	9/21/2010	0.0096	J .	0.003	16,000		340	74.2	3.0	40.8	56.2
FPS10-010	FPS10-010	N	9/22/2010	0.17		0.029	17,000		330	76.7	0.0	67.2	32.8
FPS10-011	FPS10-DUP-H-02	FD	9/22/2010	0.28	J	0.03	13,000		340	74.4	NA	NA	NA .
FPS10-011	FPS10-DUP-H-02	N	9/22/2010	0.71	J	0.03	17,000		340	73,2	0.4	61.3	38.3
FPS10-012	FPS10-012	N	9/23/2010	1.1		0.029	14,000		330	75.8	0.1	50.7	49.2
FPS10-013	FPS10-013	N	9/28/2010	0.69	J	0.035	8,100		400	62.6	0.5	27.2	72.3
FPS10-013	FPS10-013	FD	9/28/2010	1.1	J	0.03	8,700		340	72.7	NA	NA	NA
FPS10-014	FPS10-014	N	9/28/2010	0.75		0.032	2,800		370	67.9	0.4	33.1	66:5
FPS10-015	FPS10-015	N	9/28/2010	0.45	J	0.038	4,600		430	58.1	0.0	30.8	69.2
FPS10-016	FPS10-016	N	9/28/2010	0.88	J	0.034	4,800		380	65.4	0.0	29.0	71.0
FPS10-017	FPS10-017	N	9/28/2010	0.95	j	0.031	4,300		360	69.9	0.0	41.8	58.2
FPS10-018	FPS10-018	N	9/29/2010	0.17		0.028	3,500		320	78.2	0.8	53.2	46.0
FPS10-018	FPS10-018	FD	9/29/2010	0.23	J	0.028	4,700		320	77.6	NA	NA	NA
FPS10-019	FPS10-019	N	9/29/2010	0.68		0.028	5,000		320	79.1	6.7	49.1	44.2
FPS10-020	FPS10-020	N	9/29/2010	1.3		0.029	4,600		330	75.4	0.0	36.1	63.9
FP\$10-021	FP\$10-021	N	9/29/2010	0.88		0.029	4,900		340	74.6	0.0	32.9	67.1
FPS10-022	FPS10-022	N	9/29/2010	1.3	-	0.027	3,900		310	81.2	3.2	47.1	49.7
FPS10-023	FP\$10-023	N	9/30/2010	0.13		0.037	25,000		850	58.8	0.8 ·	39.9	59.3
FPS10-024	FPS10-024	N	9/30/2010	0.18		0.032	28,000		730	68.4	0.0	31.6	68.4
FPS10-027	FPS10-027	N	9/30/2010	0.10		0.039	29,000		880	56.8	0.0	24.9	75.1
FPS10-028	FPS10-028	N	9/30/2010	0.010		0:0041	5,600		930	53.7	0.0	26.7	73:3
FPS10-029	FPS10-029	N	10/1/2010	0.73		0.027	22,000		620	80.7	0.9	23.3	75.8
FPS10-030	FPS10-030	N	10/1/2010	0.30	J	0.03	18,000		680	73.5	2.9	34.2	62.9
FPS10-030	FPS10-030	FD	10/1/2010	0.83	J	0.029	21,000		670	75.0	NA	NA	NA
FPS10-031	FPS10-031	N	10/1/2010	0,42	J	0,029	27,000		660	75.5	0.0	15.1	84.9

Table 8 MFLBC Validated Floodplain Soil Analytical Results Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Fines Content Parameter Mirex **Total Organic Carbon** Solids, Percent **Gravel Content** Sand Content (Silt + Clay) Unit mg/kg mg/kg percent percent percent percent Composite Sample RĹ Result Sample ID Sample Type Sample Date Result Qual RL Result Qual Result Result Result Location FPS10-032 FPS10-032 10/1/2010 0.74 0.028 20,000 630 79.1 0.0 41.4 58.6 FPS10-033 30,000 690 72.7 0.0 13.7 86.3 FPS10-033 N 10/1/2010 0.59 0.03 FPS10-034 FPS10-034 N 10/1/2010 0.028 26,000 640 77.7 0.0 25.2 74.8 1.1 FPS10-035 FPS10-035 N 10/2/2010 0.11 0.029 5.800 330 75.6 0.7 31.3 68.0 FD 0.17 330 75.7 NA NA NA FPS10-035 FPS10-035 10/2/2010 0.029 6,900 75.2 34.0 66.0 FPS10-036 FPS10-036 N 10/2/2010 0.79 0:029 7.500 330 0.0 FPS10-037 FPS10-037 N 10/2/2010 0.44 0.03 5,900 350 72.3 0.0 27.2 72.8 J 84.7 53.1 46.9 FPS10-038 FPS10-038 N 10/2/2010 0.47 0.026 4,600 300 0.0 77.0 41.4 FPS10-039 FPS10-039 N 10/3/2010 0,65 0.029 3,700 320 0.0 58.6 50.3 FPS10-040 FPS10-040 N 10/3/2010 0,36 0.03 5,100 340 73.8 1.6 48.1 62.8 24.6 75.4 FPS10-041 FPS10-041 N 10/4/2010 1.1 0.035 1,900 400 0.0 28.0 71.8 FPS10-042 FPS10-042 N 10/4/2010 0.22 0.0067 NA 65.8 0.2 0.007 62.8 0.0 14.3 85.7 FPS10-043 FPS10-043 N 10/4/2010 0.28 NA 420 59.4 NA NA NA FPS10-044 FPS10-DUP9 FD 10/4/2010 0:62 0.037 1,100 FPS10-044 FPS10-DUP9 10/4/2010 0.67 0.038 1.200 440 57.3 0.0 10.3 89.7 N 74.9 FPS10-045 N 10/4/2010 1.4 0.03 1,100 340 73.4 0.0 25.1 FPS10-045 65.2 15.4 84.6 FPS10-046 FPS10-046 Ν 10/4/2010 0.91 0.034 1,100 380 0,0 350 72.2 NA NA NA FPS10-047 FPS10-047 N 10/5/2010 0.60 0.03 920 0.57 4,200 340 72.9 0.5 42.1 57.4

0.03

0.33

0.34

0.15

0.16

0.31

0.31

0.31

0.032

J

33,000

31,000

34,000

7.900

17,000

19,000

32,000

39,000

1800

1900

1700

360

350

1800

1700

1800

67.7

65.0

72.6

69.7

71.2

70.9

72.1

69.3

NA

0.0

0.0

1.0

0.0

NA

0.0

0.0

NA

16.1

39.1

24.6

32.9

NA

39.0

36,5

NA

83.9

60.9

74.4

67.1

NA

61.0

63,5

Notes:

N = normal

FD = field duplicate

FPS10-048

FPS10-053

FPS10-053

FPS10-054

FPS10-056

FPS10-057

FPS10-057

FPS10-058

FPS10-066

Qual = validated qualifier

RL = laboratory reporting limit

mg/kg = milligrams per kilogram

NA = not analyzed (Grain size distribution was not analyzed for duplicate samples.)

FPS10-048

FPS10-053 FD

FPS10-053 FD

FPS10-054

FPS10-056

FPS10-057

FPS10-057

FPS10-058

FPS10-066

N

FD

N

N

N

N

FD

N

N

10/5/2010

3/28/2011

3/28/2011

3/29/2011

3/29/2011

3/29/2011

3/29/2011

3/29/2011

3/31/2011

0.71

0.74

0.97

0.47

0.98

1.0

0.73

0.14

Qualifiers:

J = estimated result

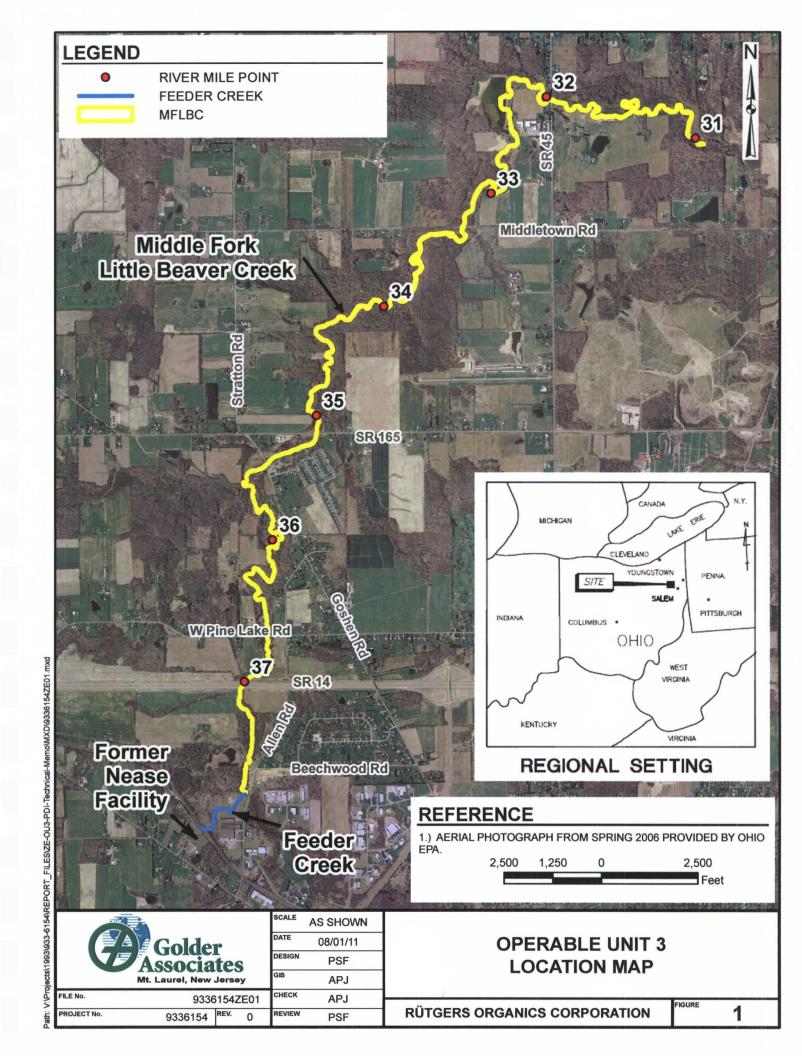
Table 9 MFLBC Fish Tissue Analytical Results Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

	-	Parameter		Mirex		Percent Lipids
		Unit		mg/kg		%
Sample ID	Species	Туре	Result	Qual	RL	Result
FT10-12.5-CC-F	Common Carp	Fillet	0.121		0.0497	3.31
FT10-12.5-CC-O	Common Carp	Offal	0.444		0.193	8.69
FT10-12.5-WS-F	White Sucker	Fillet	0.0582		0.0298	0.437
FT10-12.5-WS-O	White Sucker	Offal	0.189		0.0996	1.18
FT10-32.0-CC-F	Common Carp	Fillet	0.516		0.194	1.15
FT10-32.0-CC-O	Common Carp	Offal	1.300		0.498	3.65
FT10-32.0-WS-F	White Sucker	Fillet	0.286		0.0994	0.785
FT10-32.0-WS-O	White Sucker	Offal	1.470		0.499	3.43
FT10-32.0-YB-F	Yellow Bullhead	Fillet	0.324		0.0998	1.23
FT10-32.0-YB-O	Yellow Bullhead	Offal	1.650		0.497	5.58
FT10-33.3-CC-F	Common Carp	Fillet	1.220		0.498	1.53
FT10-33.3-CC-O	Common Carp	Offal	3.380		0.991	5.17
FT10-33.3-WS-F	White Sucker	Fillet	0.130		0.0492	0.640
FT10-33.3-WS-O	White Sucker	Offal	1.020		0.484	3.18
FT10-35.4-WS-F	White Sucker	Fillet	0.151		0.0997	0.788
FT10-35.4-WS-O	White Sucker	Offal	0.889		0.497	3.65
FT10-35.4-YB-F	Yellow Bullhead	Fillet	0.200		0.0995	0.666
FT10-35.4-YB-O	Yellow Bullhead	Offai	1.270		0.499	4.59
FT10-36.7-WS-F	White Sucker	Fillet	0.194		0.0964	0.888
FT10-36.7-WS-O	White Sucker	Offal	1.420		0.489	4.63
FT10-36.7-YB-O	Yellow Bullhead	Whole Body	0.744		0.249	4.18
FT10-37.5-WS-F	White Sucker	Fillet	0.0581		0.0196	1.20
FT10-37.5-WS-O	White Sucker	Offa!	0.341		0.200	6.01
FT10-38.4-WS-F	White Sucker	Fillet	ND	U	0.0099	1.38
FT10-38.4-WS-O	White Sucker	Offal	ND	U	0.0099	4.47

Notes:

Qual = laboratory qualifier
RL = laboratory reporting limit
mg/kg = milligrams per kilogram
ND = Not Detected
Qualifiers:
U = not detected above RL

Table 10 MFLBC Fish Tissue Sample Weight Summary PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio


Sample ID	Fillet / Offal	Ohio EPA Lab Weight (g)	Field-Measured Weight (g)
FT10-12.5-CC-F	Fillet	1670	1675
FT10-12.5-CC-O	Offal	6926	7200
FT10-12.5-WS-F	Fillet	444	466
FT10-12.5-WS-O	Offal	1498	1505
FT10-32.0-CC-F	Fillet	908	958
FT10-32.0-CC-O	Offal	4004	3625
FT10-32.0-WS-F	Fillet	336	351
FT10-32.0-WS-O	Offal	894	905
FT10-32.0-YB-F	Fillet	22	105
FT10-32.0-YB-O	Offal	152	352
FT10-33.3-CC-F	Fillet	1134	1525
FT10-33.3-CC-O	Offal	3848	5225
FT10-33.3-WS-F	Fillet	292	322
FT10-33.3-WS-O	Offal	890	924
FT10-35.4-WS-F	Fillet	286	295
FT10-35.4-WS-O	Offal	814	810
FT10-35.4-YB-F	Fillet	80	84
FT10-35.4-YB-O	Offal	287	290
FT10-36.7-WS-F	Fillet	102	252
FT10-36.7-WS-O	Offal	314	742
FT10-36.7-YB-O	Offal	156	158
FT10-37.5-WS-F	Fillet	224	239
FT10-37.5-WS-O	Offal	686	715
FT10-38.4-WS-F	Fillet	142	150
FT10-38.4-WS-O	Offal	370	365

Significant reductions in "lab" weight as compared to the field-measured weight in highlighted rows are due to analysis of split samples by Test America. Ohio EPA Lab weights were used in the calculation of whole body concentrations. TestAmerica data are not relied upon in this report.

For samples FT10-33.3-YB-O and FT10-36.7-YB-O, the samples were collected as Whole Body composites because there was insufficient tissue to fillet.

Table 11 MFLBC Fish Tissue Calculated Whole Body Results PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Whole Body Sample	Whole-Body Mirex (mg/kg)	Whole-Body %Lipids	Mirex Whole Body-To- Fillet Ratio	Lipids Whole Body-To Fillet Ratio
FT10-12.5-WS	0.159	1.0	2.73	2.31
FT10-12.5-CC	0.381	7.6	3.15	2.31
FT10-32.0-YB	1.48	5.0	4.58	4.09
FT10-32.0-WS	1.15	2.7	4.01	3.45
FT10-32.0-CC	1.16	3.2	2.24	2.77
FT10-33.3-WS	0.800	2.6	6.15	3.99
FT10-33.3-CC	2.89	4.3	2.37	2.84
FT10-35.4-YB	1.04	3.7	5.18	5.61
FT10-35.4-WS	0.697	2.9	4.62	3.69
FT10-36.7-WS	1.12	3.7	5.77	4.18
FT10-37.5-WS	0.271	4.8	4.67	4.02
FT10-38.4-WS	ND (< 0.0099)	3.6	N/A	2.62
FT10-36.7-YB	0.744	4.2	No Fillet Analyzed	No Fillet Analyzed

RIVER MILE POINT

SEDIMENT SAMPLING AREA MFLBC

FLOODPLAIN SOIL SAMPLE

FEEDER CREEK

1,800 900 0 1,800 Feet

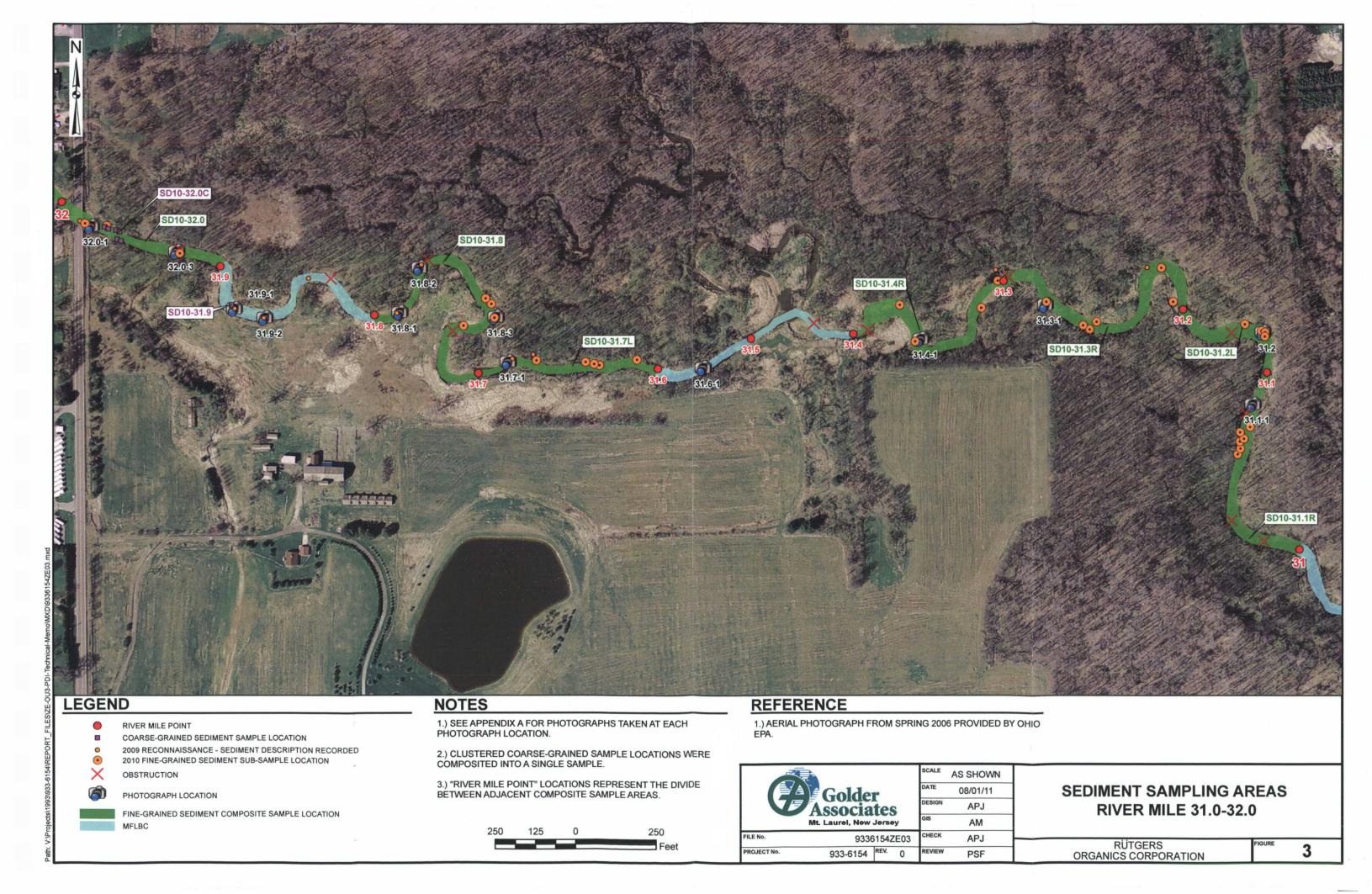
 PROJECT NO.
 933-615

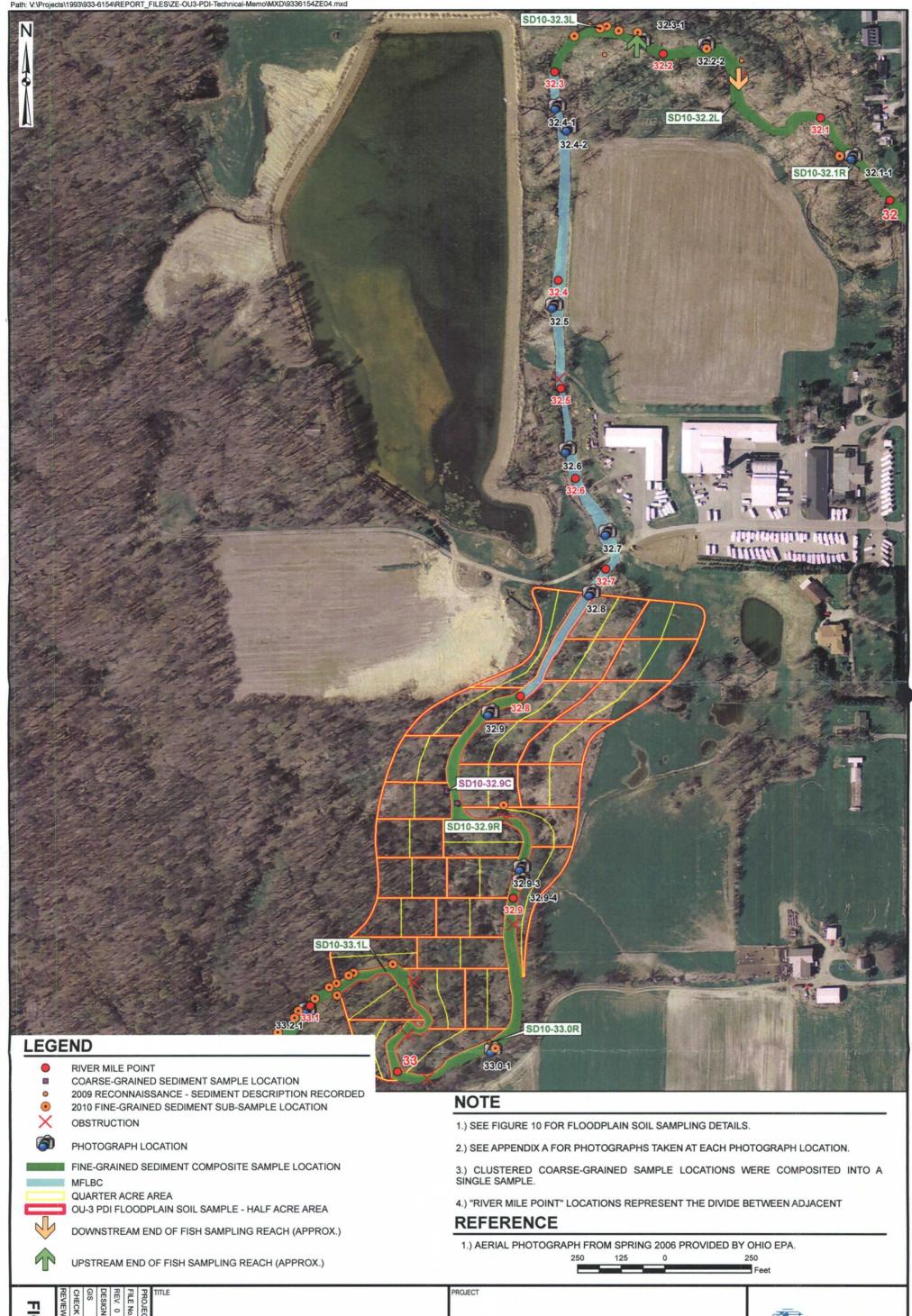
 FILE No.
 9336154ZE0

 REV. 1
 SCALE: AS SHOW

 DESIGN
 APJ
 08/01/11

 GIS
 AM
 08/01/11


 CHECK
 APJ
 08/01/11


 REVIEW
 PSF
 08/01/11

OVERALL
PDI SAMPLING PROGRAM

PROJECT

 PROJECT No.
 933-6154

 FILE No.
 9336154ZE04

 REV. 0
 SCALE: AS SHOWN

 DESIGN
 APJ
 08/01/11

 GIS
 AM
 08/01/11

 CHECK
 APJ
 08/01/11

 REVIEW
 PSF
 08/01/11

SEDIMENT SAMPLING AREAS RIVER MILE 32.1-33.0

FIGURE

933-6154 9336154ZE05 E: AS SHOWN 08/01/11

RIVER MILE 33.1-34.0

ORGANICS CORPORATION

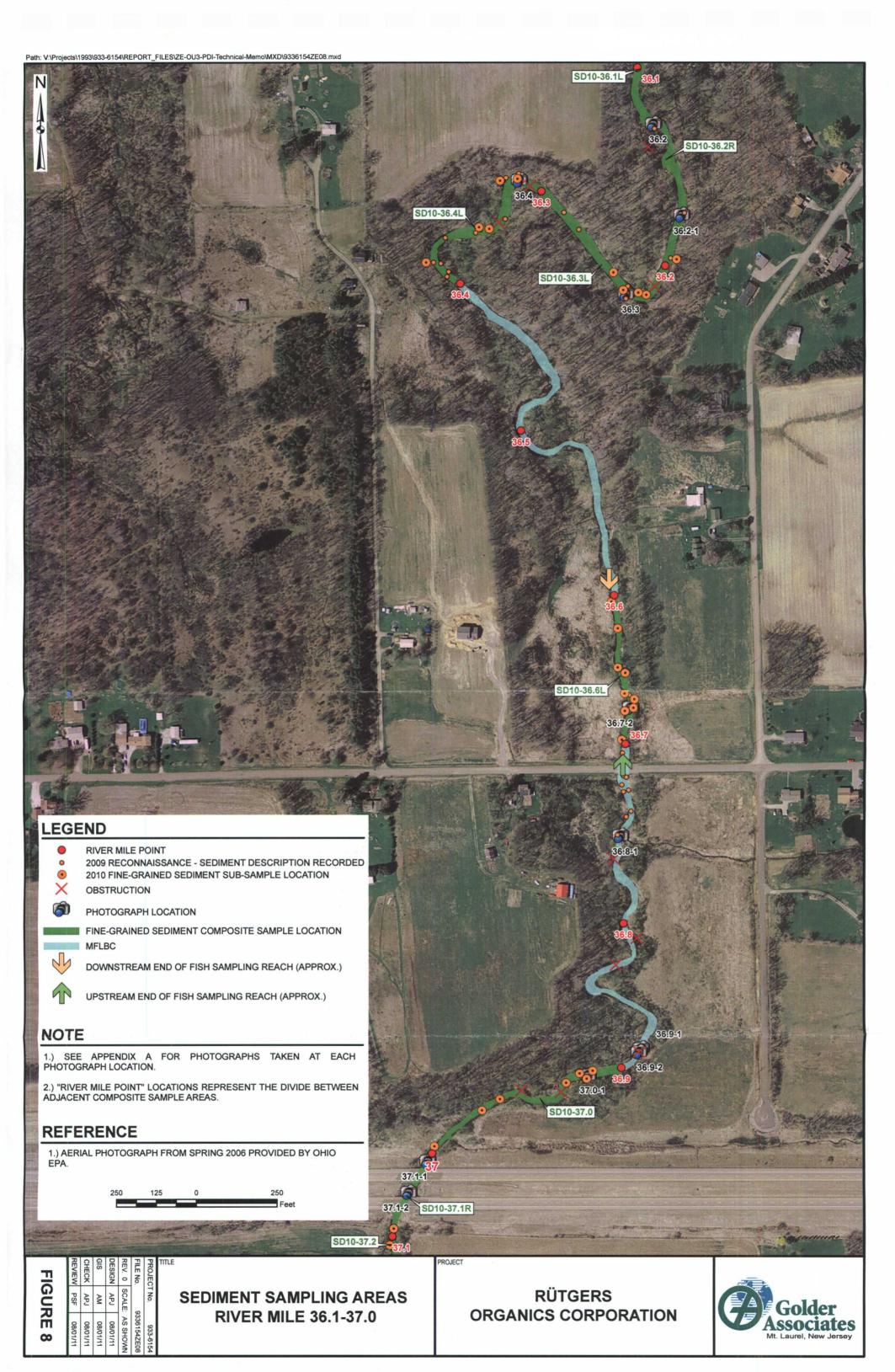
FIGURE 7

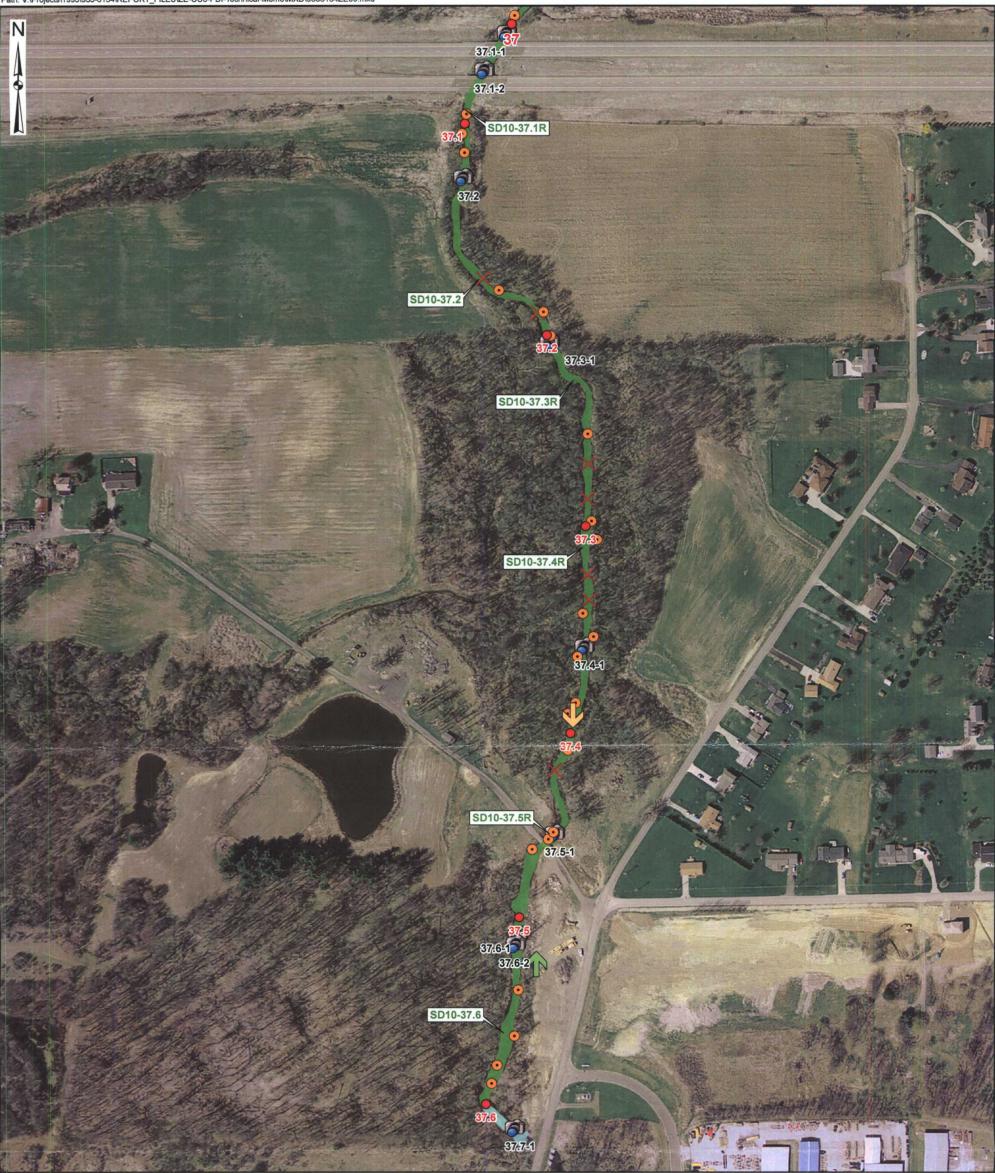
 KOJECT No.
 933-6154

 JE No.
 933-6154ZE07

 IV. 0
 SCALE: AS SHOWN

 ISIGN
 APJ
 08/01/11


 S
 AM
 08/01/11


 HECK
 APJ
 08/01/11

 VIEW
 PSF
 08/01/11

SEDIMENT SAMPLING AREAS RIVER MILE 35.1-36.0

RIVER MILE POINT

2009 RECONNAISSANCE - SEDIMENT DESCRIPTION RECORDED 2010 FINE-GRAINED SEDIMENT SUB-SAMPLE LOCATION

OBSTRUCTION

PHOTOGRAPH LOCATION

FINE-GRAINED SEDIMENT COMPOSITE SAMPLE LOCATION MFLBC

UPSTREAM END OF FISH SAMPLING REACH (APPROX.)

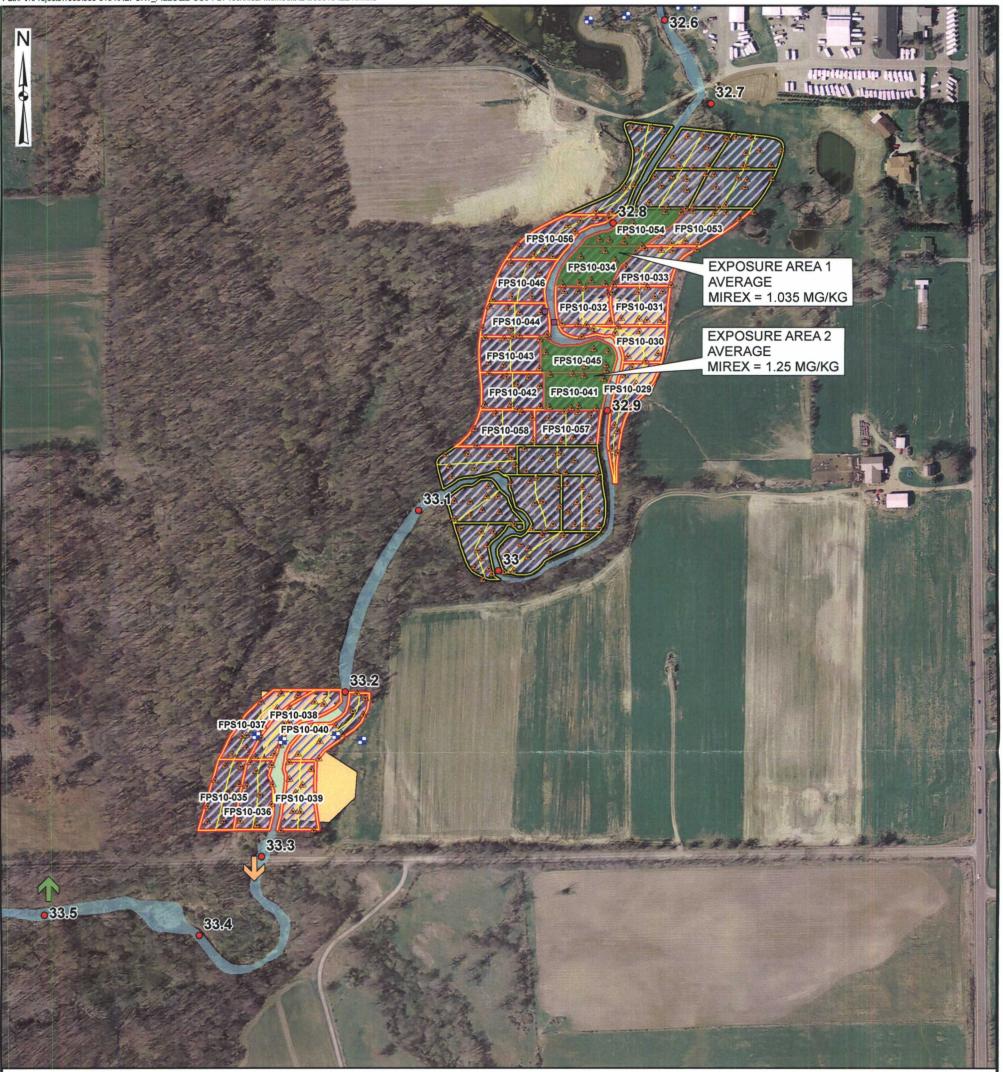
DOWNSTREAM END OF FISH SAMPLING REACH (APPROX.)

NOTE

PROJECT

- 1.) SEE APPENDIX A FOR PHOTOGRAPHS TAKEN AT EACH PHOTOGRAPH LOCATION.
- 2.) "RIVER MILE POINT" LOCATIONS REPRESENT THE DIVIDE BETWEEN ADJACENT COMPOSITE SAMPLE AREAS.

REFERENCE


1.) AERIAL PHOTOGRAPH FROM SPRING 2006 PROVIDED BY OHIO EPA.

FIGURE

PROJECT FILE No. REV. 0 S TITLE

SEDIMENT SAMPLING AREAS RIVER MILE 37.1-37.6

- 2010-2011 OU3 PDI FLOODPLAIN SOIL SUB SAMPLE LOCATION
- RI FLOODPLAIN SOIL SAMPLE LOCATION
- COARSE-GRAINED SEDIMENT SAMPLE LOCATION -

DOWNSTREAM END OF FISH SAMPLING REACH (APPROX.)

UPSTREAM END OF FISH SAMPLING REACH (APPROX.)

QUARTER ACRE AREA

OU3 PDI FLOODPLAIN SOIL SAMPLE - ANALYZED

FLOODPLAIN SOIL EXPOSURE AREA

2006 COMPOSITE FLOODPLAIN SOIL SAMPLE LOCATION

MIDDLE FORK LITTLE BEAVER CREEK

TITLE

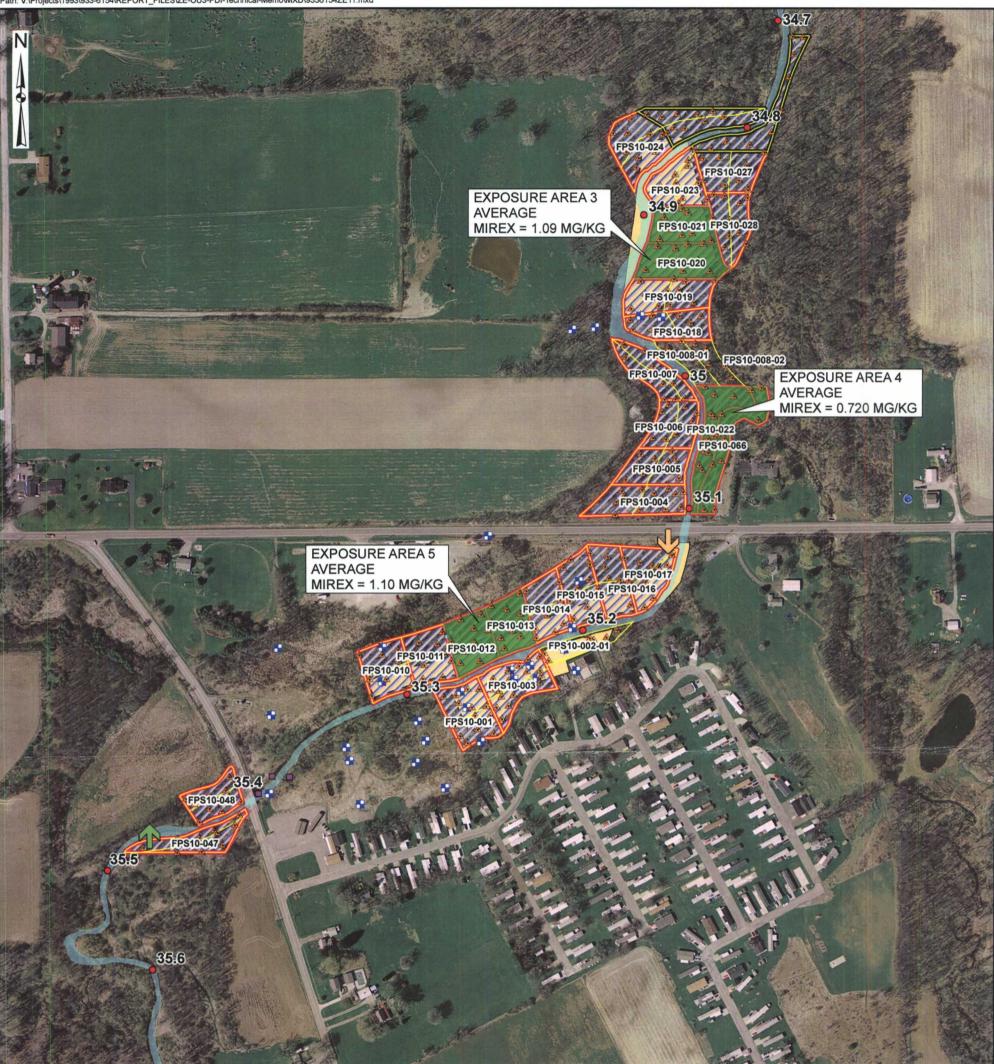
OU3 PDI FLOODPLAIN SOIL SAMPLE - ARCHIVED

NOTE

PROJECT

WITH MIREX > 1 MG/KG.

REFERENCE


1.) AERIAL FROM SPRING 2006 PROVIDED BY OHIO EPA.

PROJECT No.
FILE
REV. 0 SCAL
DESIGN APJ FIGURE SCALE: APJ APJ PSF 933-6154
9336154ZE10
E: AS SHOWN
08/01/11
08/01/11
08/01/11

FLOODPLAIN SAMPLING MAP **RIVER MILE 32.9-33.3 VICINITY**

- RIVER MILE POINT
- △ 2010-2011 OU3 PDI FLOODPLAIN SOIL SUB SAMPLE LOCATION
- RI FLOODPLAIN SOIL SAMPLE LOCATION
- COARSE-GRAINED SEDIMENT SAMPLE LOCATION

QUARTER ACRE AREA

OU3 PDI FLOODPLAIN SOIL SAMPLE - ARCHIVED
OU3 PDI FLOODPLAIN SOIL SAMPLE - ANALYZED

TITLE

FLOODPLAIN SOIL EXPOSURE AREA

2006 COMPOSITE FLOODPLAIN SOIL SAMPLE LOCATION

MIDDLE FORK LITTLE BEAVER CREEK

<u>NOTE</u>

PROJECT

1.) EXPOSURE AREAS WERE DEVELOPED TO INCLUDE ALL 1/2 ACRE SAMPLE RESULTS WITH MIREX > 1 MG/KG.

REFERENCE

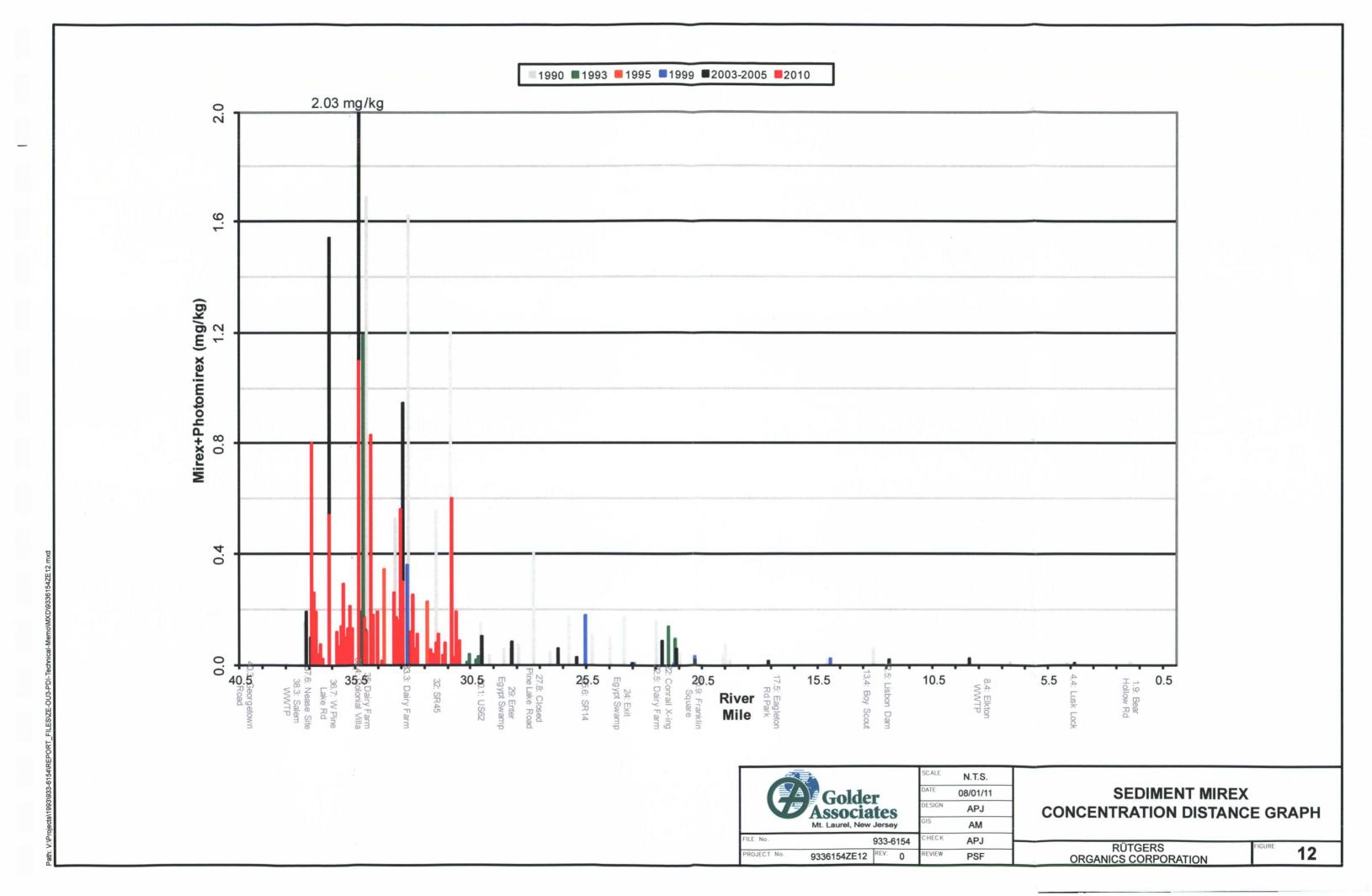
1.) AERIAL FROM SPRING 2006 PROVIDED BY OHIO EPA.

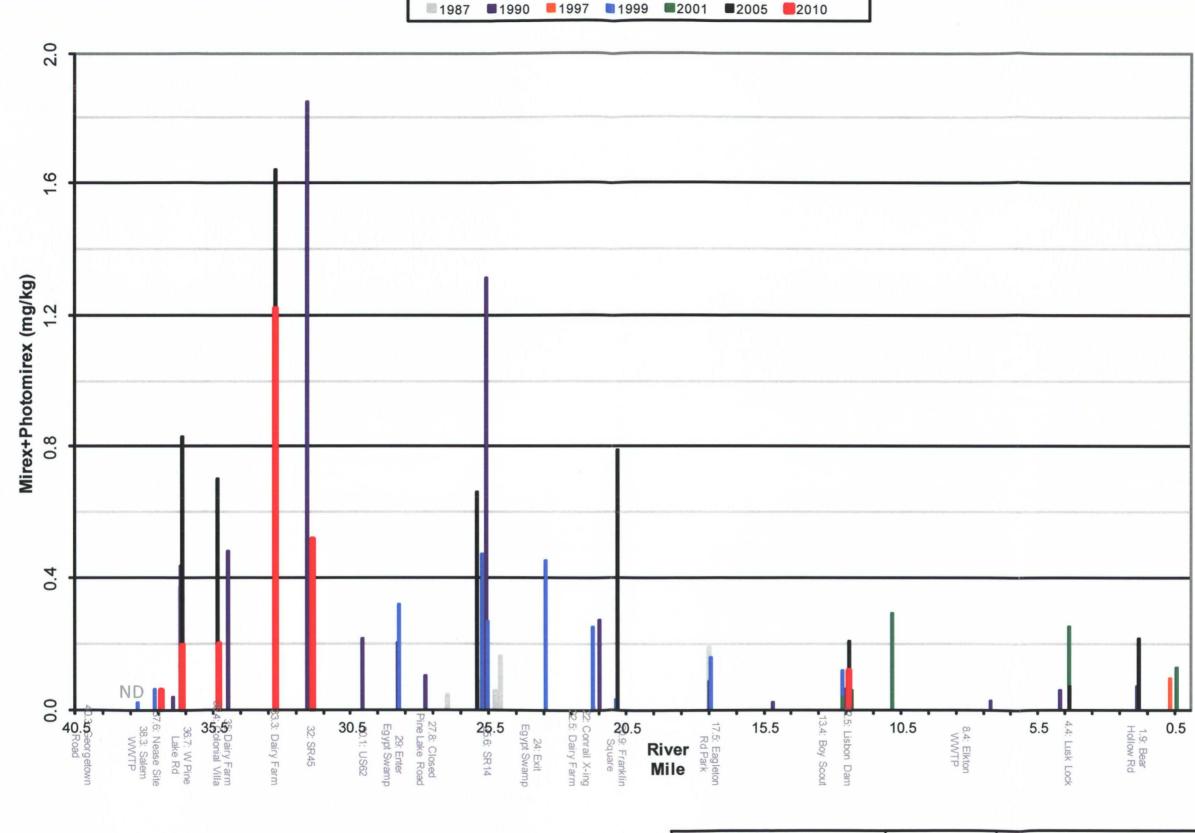
 PROJECT No.
 933-6154

 FILE OU3_PDI_UpdateMap-02

 REV. 0
 SCALE: AS SHOWN

 DESIGN
 APJ
 08/01/11


 GIS
 APJ
 08/01/11


 CHECK
 APJ
 08/01/11

 REVIEW
 PSF
 08/01/11

FLOODPLAIN SAMPLING MAP RIVER MILE 34.8-35.4 VICINITY

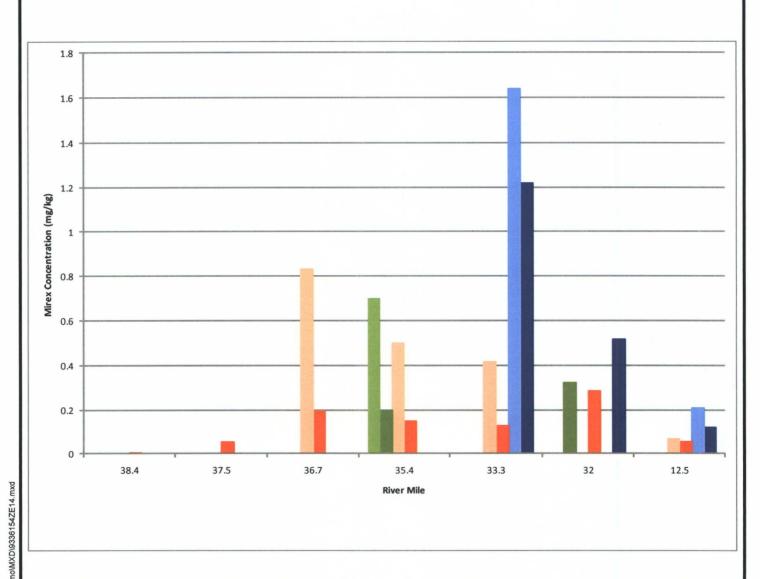
NOTE

1.) CONCENTRATION SHOWN AT EACH RIVER MILE IS THE MAXIMUM DETECTION AMONG SEVERAL SPECIES COLLECTED. IN MOST CASES THERE ARE ADDITIONAL SAMPLES WITH LOWER CONCENTRATIONS.

	Golde		SCALE DATE DESIGN
V	ASSOCIA Mt. Laurel, New		GIS
FILE No.		933-6154	CHECK
PROJECT No.	9336154ZE13	REV. 0	REVIEW

N.T.S.

08/01/11 APJ


APJ

PSF

FISH TISSUE FILLET MIREX **CONCENTRATION DISTANCE GRAPH**

RÜTGERS ORGANICS CORPORATION

13

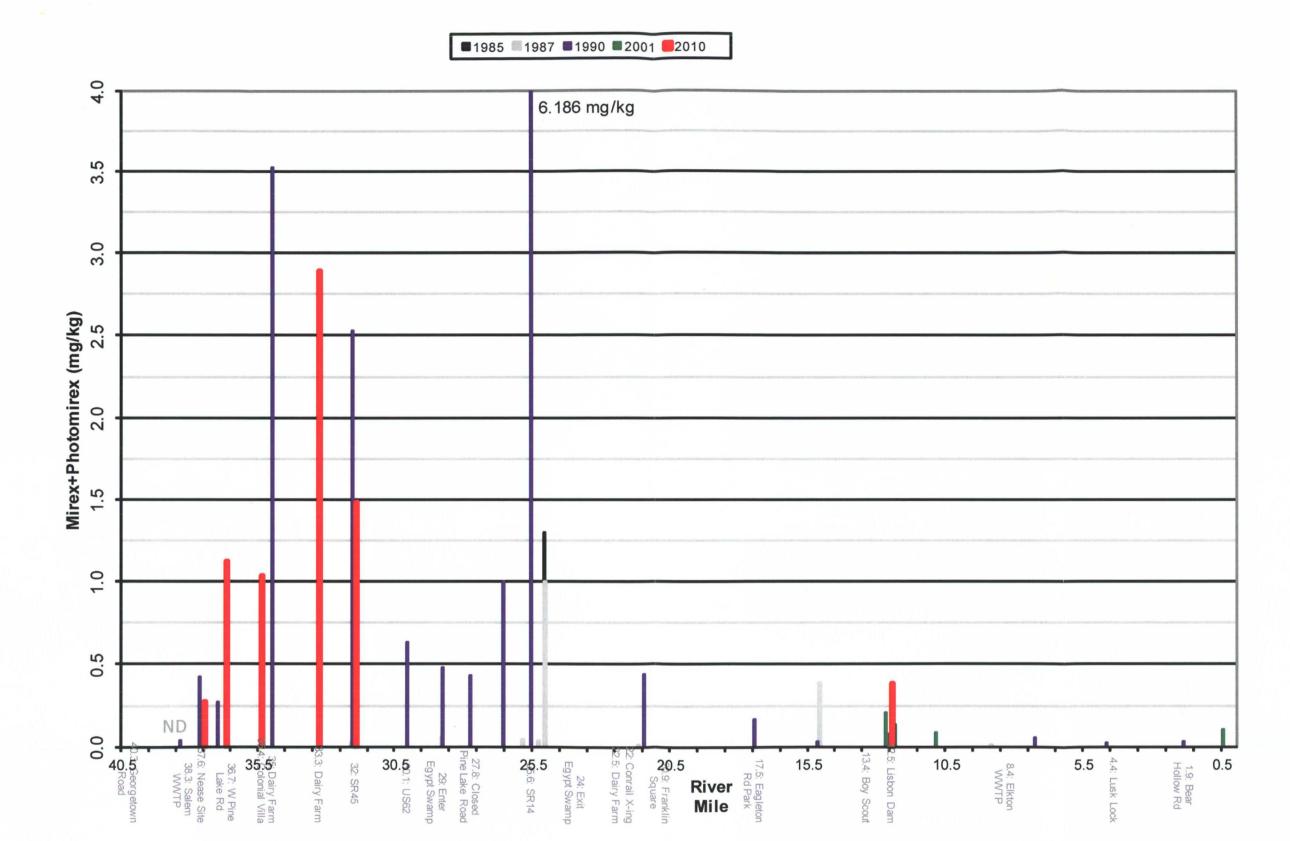
- COMMON CARP 2005 FILLET
- COMMON CARP 2010 FILLET
- WHITE SUCKER 2005 FILLET
- WHITE SUCKER 2010 FILLET
- YELLOW BULLHEAD 2005 FILLET

933-6154

YELLOW BULLHEAD - 2010 - FILLET

9336154ZE14

SCALE	N.T.S.
DATE	08/01/11
DESIGN	APJ
GIS	AM
CHECK	APJ
REVIEW	PSF


COMPARISON OF 2005 AND 2010 FISH TISSUE FILLET MIREX CONCENTRATIONS

RÜTGERS ORGANICS CORPORATION

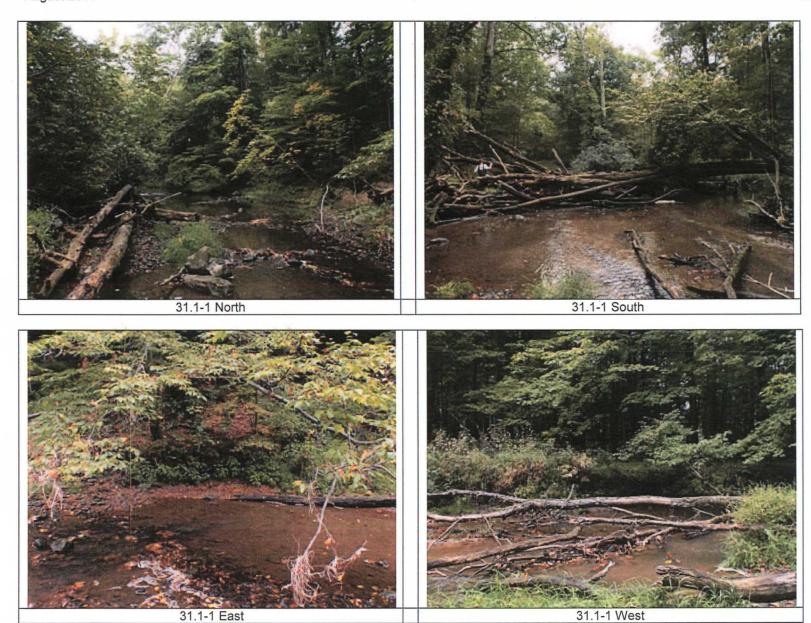
14

Path: V:Projects/1993/933-6154/REPORT_FILES/ZE-OU3-PDI-Technical-Memo/MXD/9336154ZE14.mxd

PROJECT No.

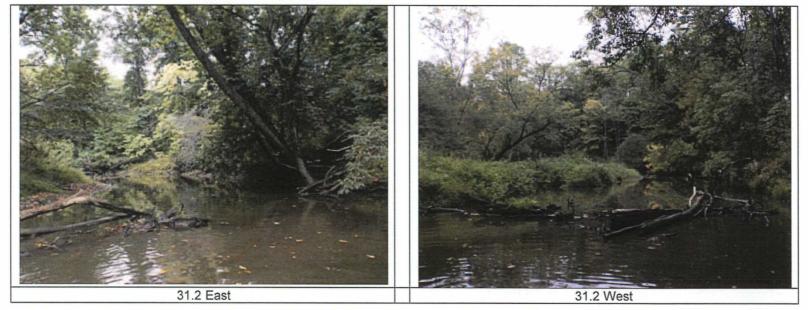
NOTE

1.) CONCENTRATION SHOWN AT EACH RIVER MILE IS THE MAXIMUM DETECTION AMONG SEVERAL SPECIES COLLECTED. IN MOST CASES THERE ARE ADDITIONAL SAMPLES WITH LOWER CONCENTRATIONS.

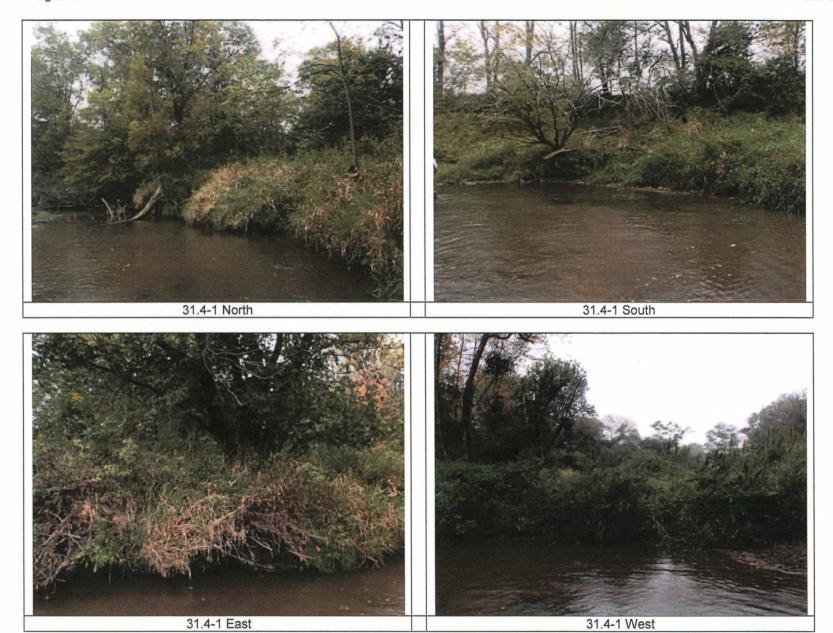

	Golde	10		SCALE	N.T.S. 08/01/11
	ASSOCIA Mt. Laurel, New	ites		DESIGN	APJ AM
FILE No.		933-6	6154	CHECK	APJ
PROJECT No.	9336154ZE15	REV.	0	REVIEW	PSF

FISH TISSUE WHOLE BODY MIREX CONCENTRATION DISTANCE GRAPH

RÜTGERS ORGANICS CORPORATION


15

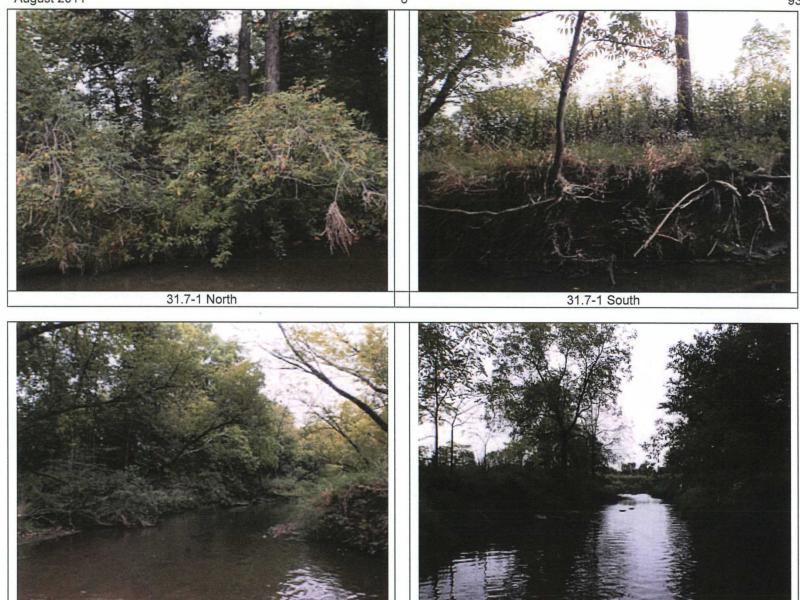
APPENDIX A PHOTOGRAPHS OF MFLBC



August 2011 3 933-6154


31.3-1 West

31.3-1 South



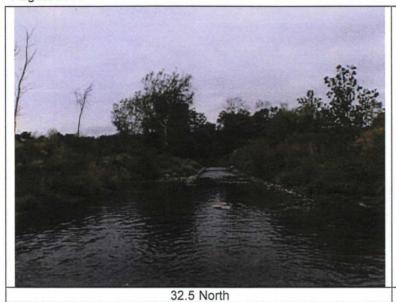
August 2011 5 933-6154

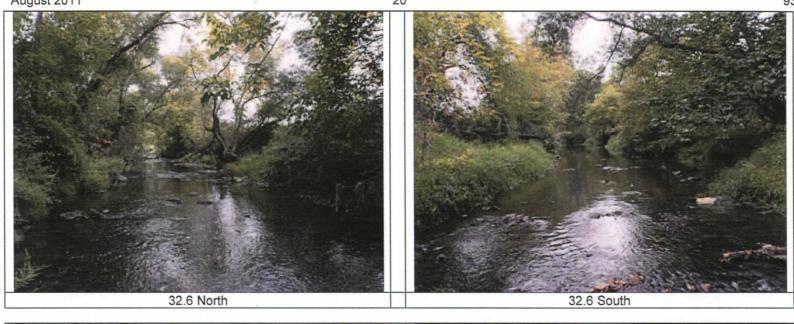
31.7-1 West

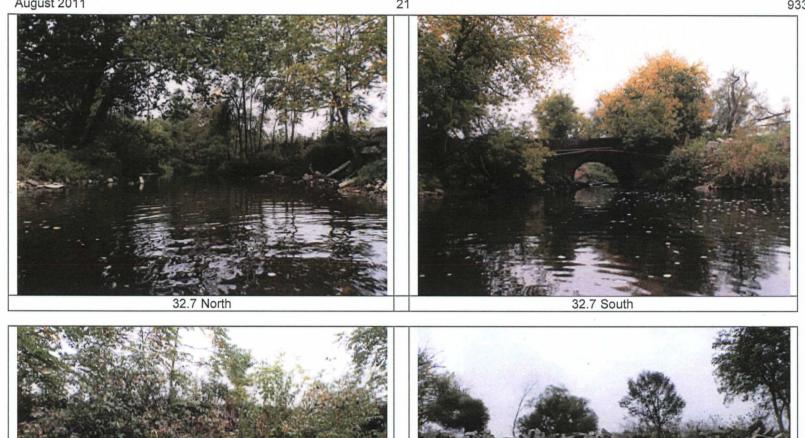
31.7-1 East

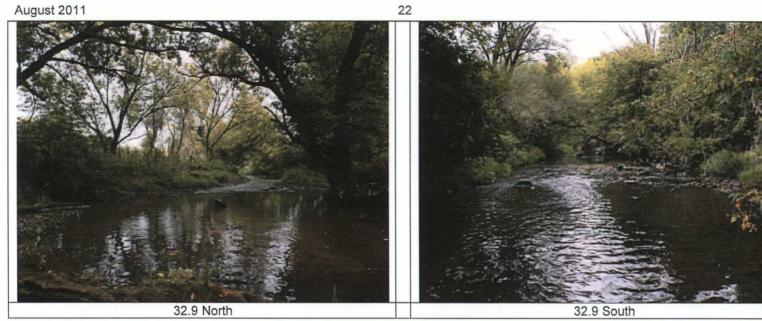
31.8-2 West

August 2011 9 933-6154

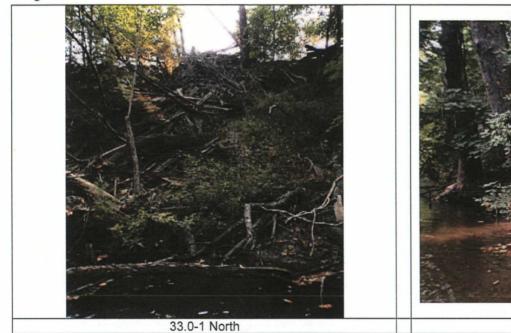










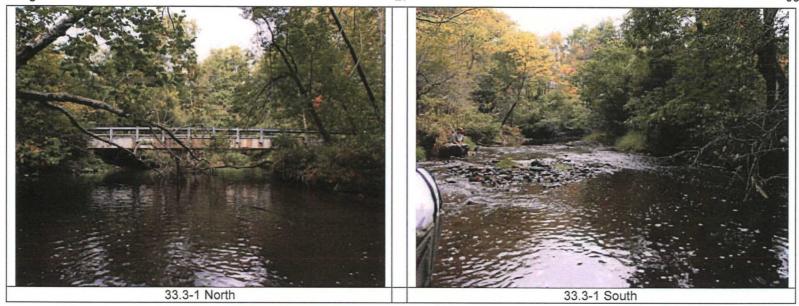


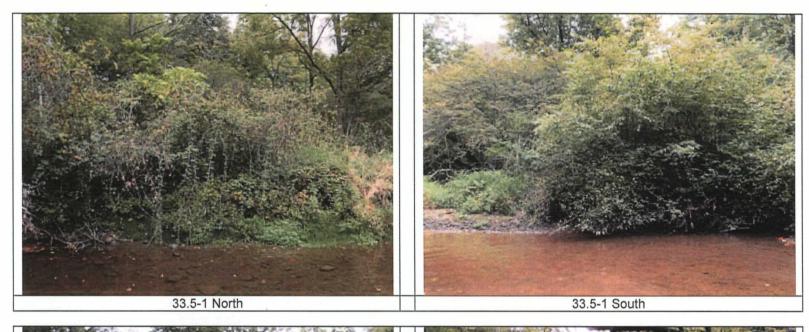

32.9-3 East

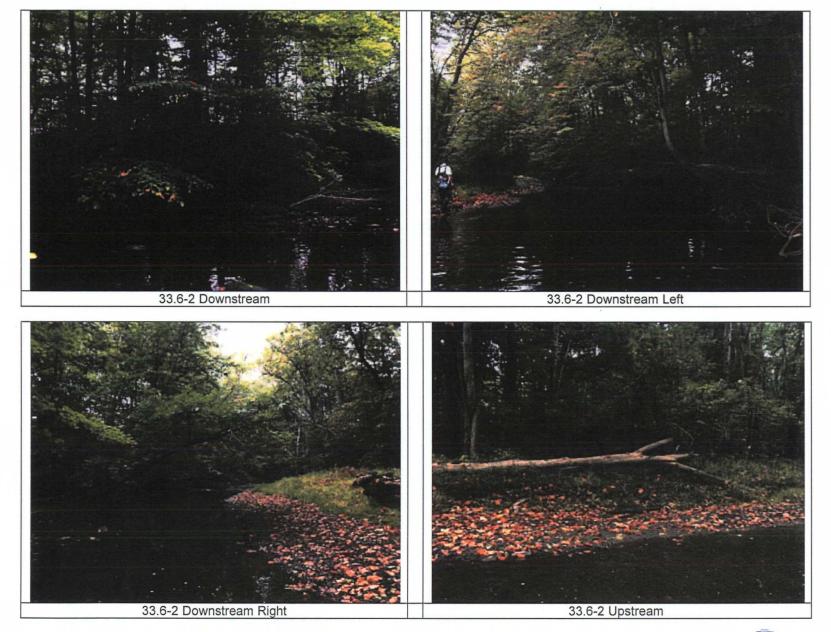
32.9-3 West

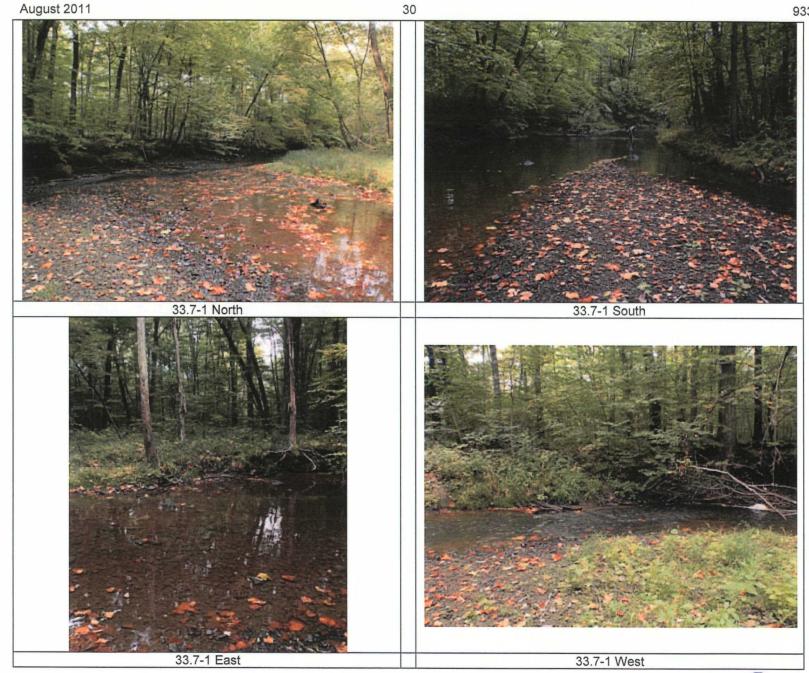
33.0-1 South

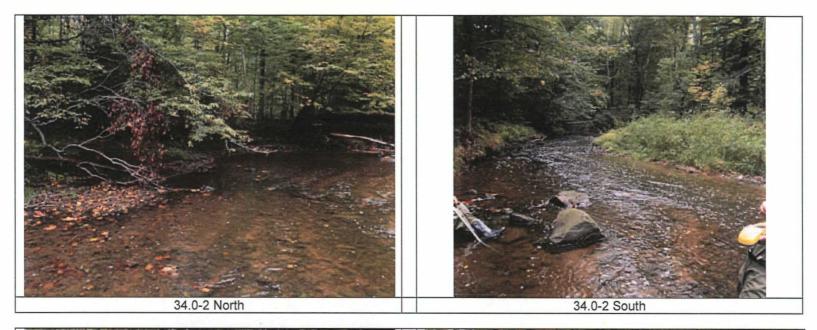


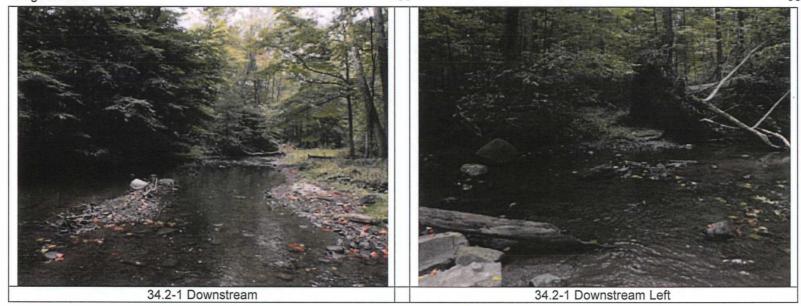


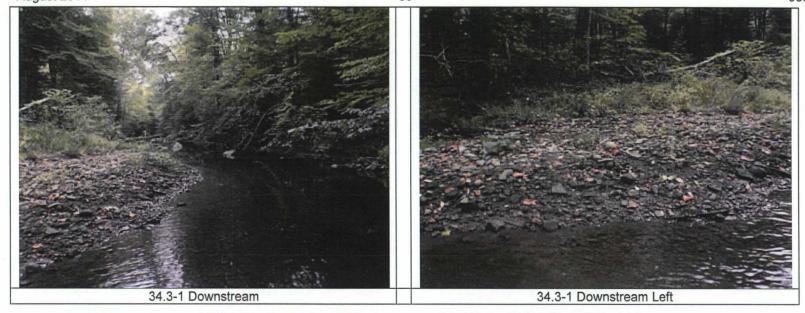




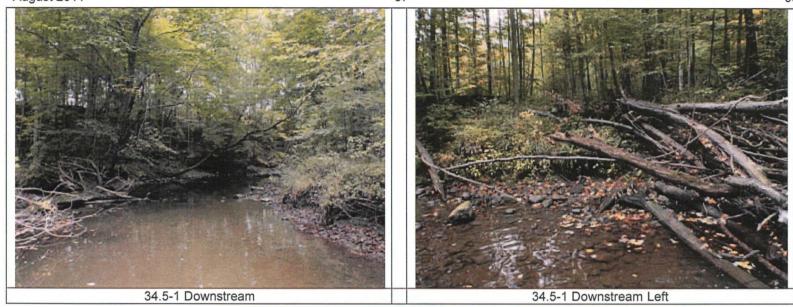


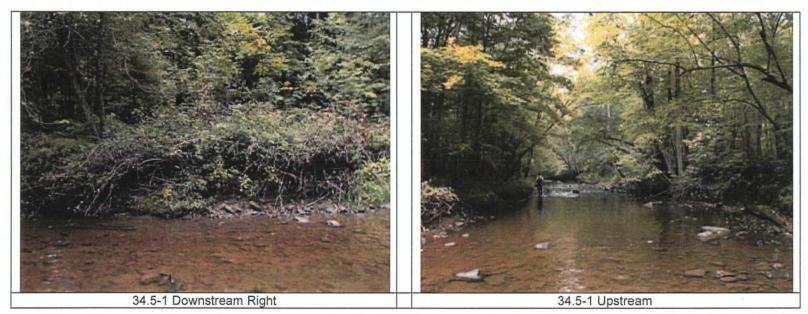


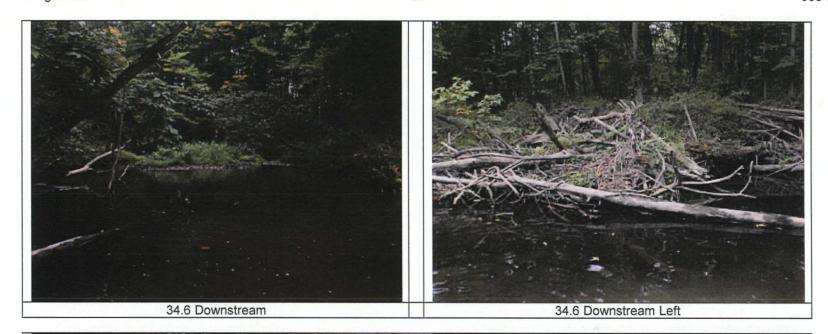


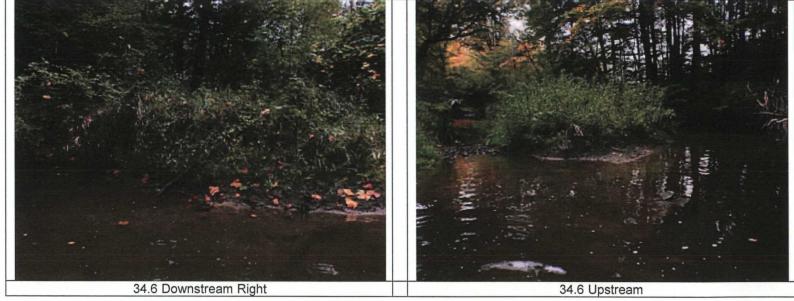


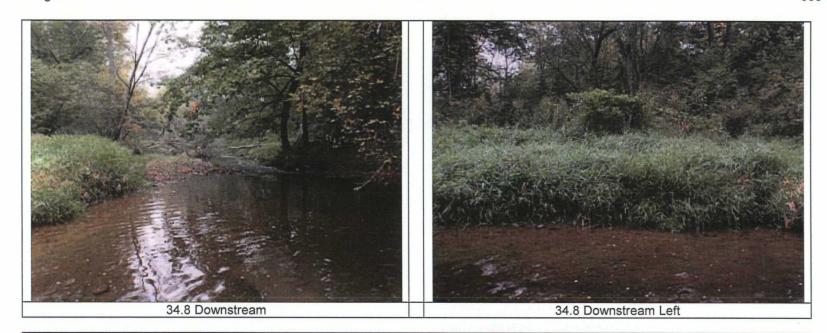


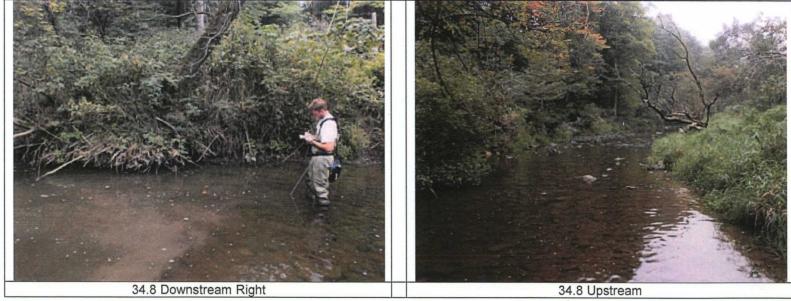










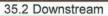


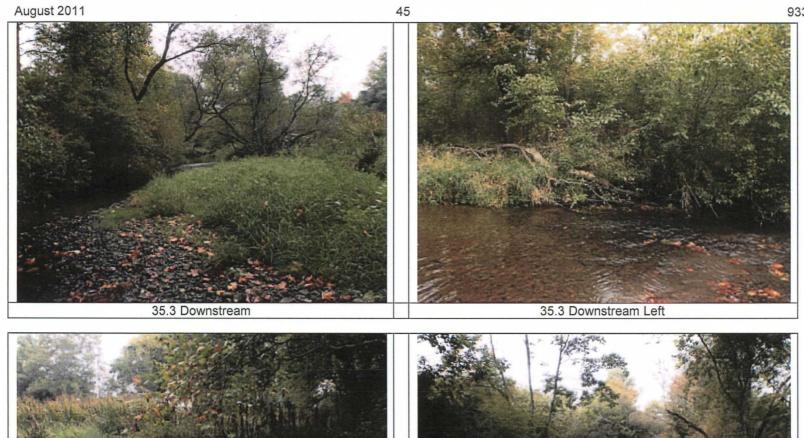
34.7 Upstream

34.7 Downstream Right

34.9 Upstream

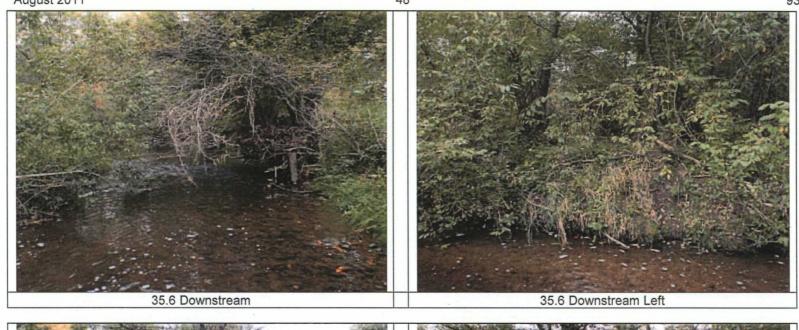
34.9 Downstream Right

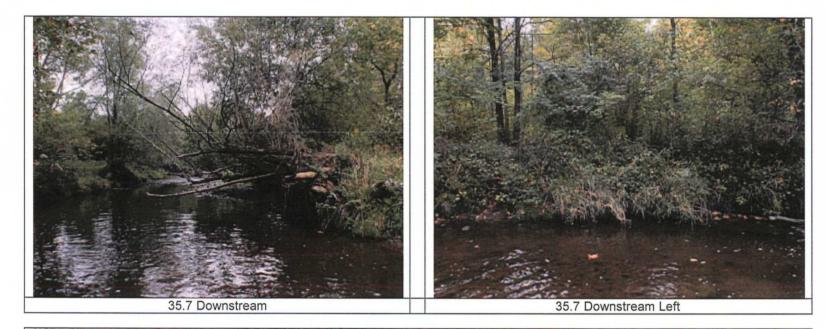


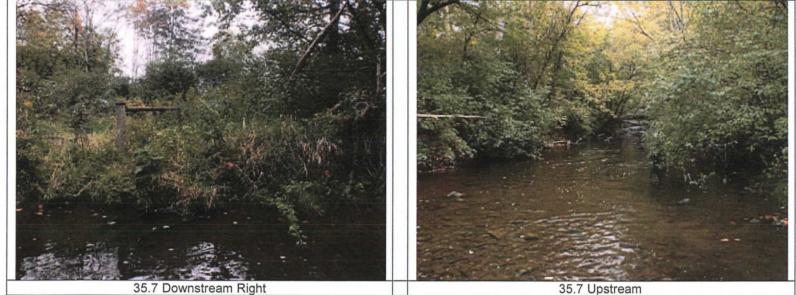

35.2 Downstream Left

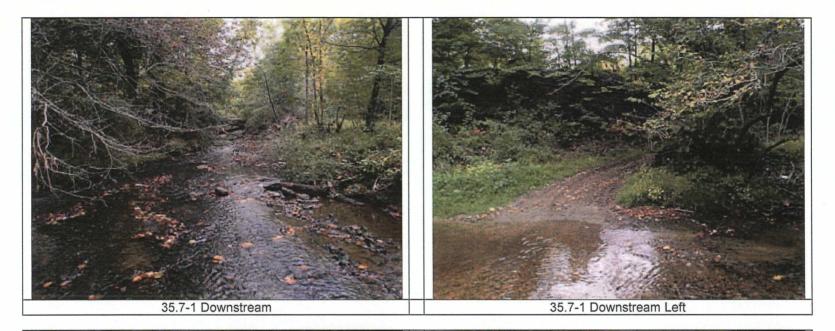


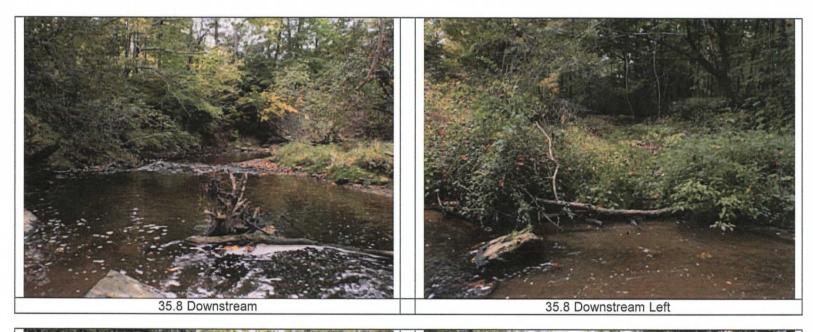
35.2 Upstream

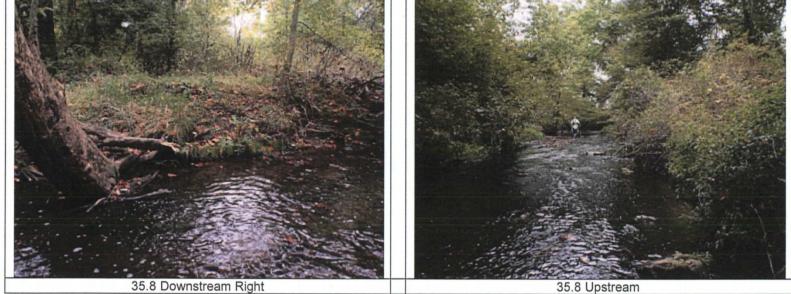


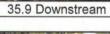

35.5 Upstream


35.5 Downstream Right

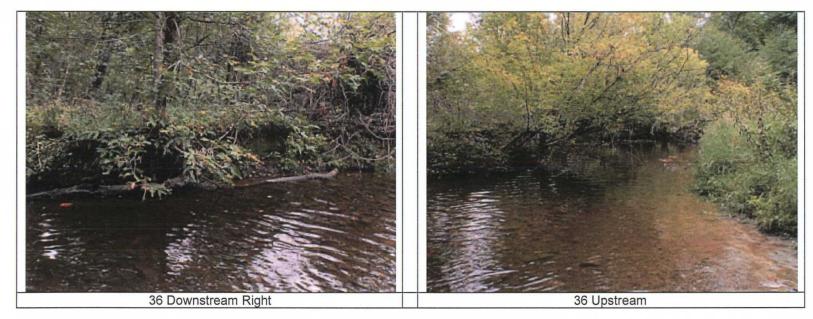






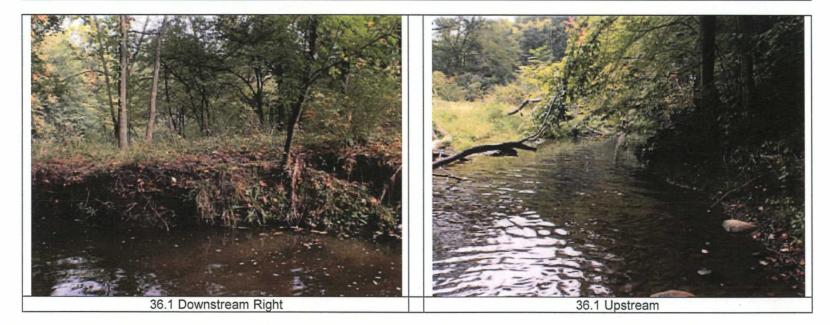


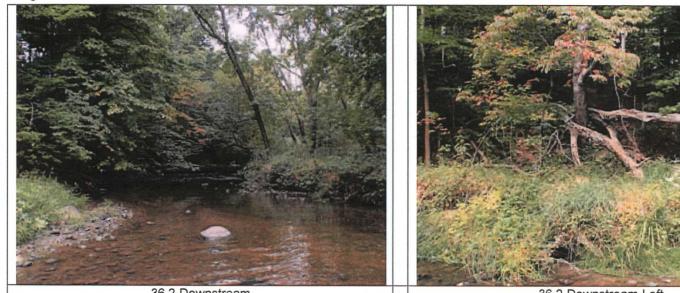
35.9 Downstream Left

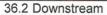


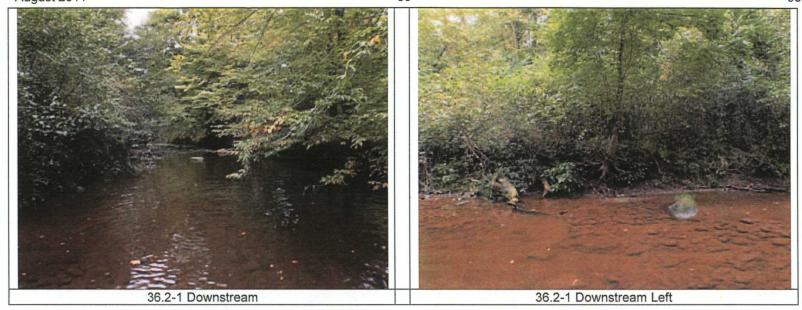
35.9 Downstream Right

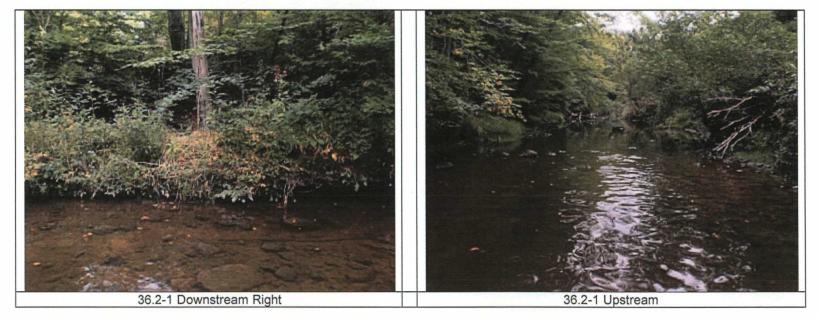
35.9 Upstream



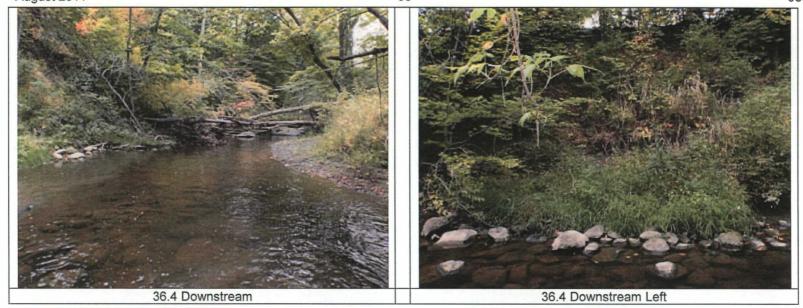


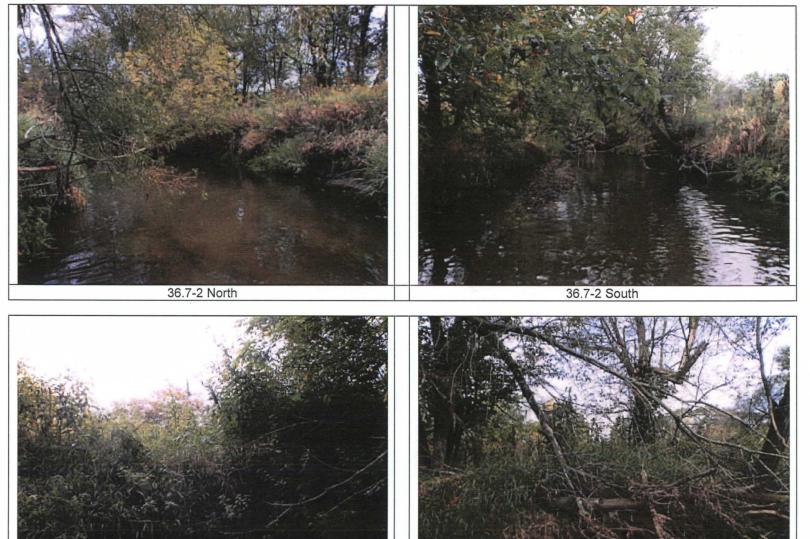




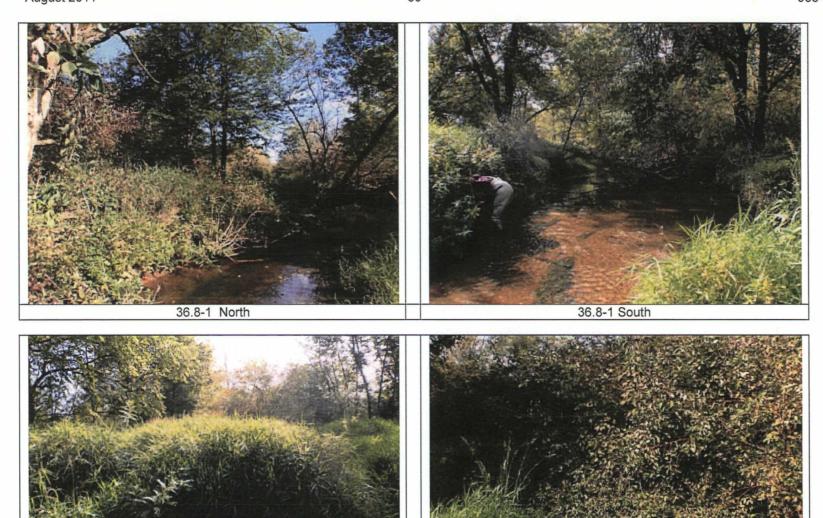


36.2 Downstream Left

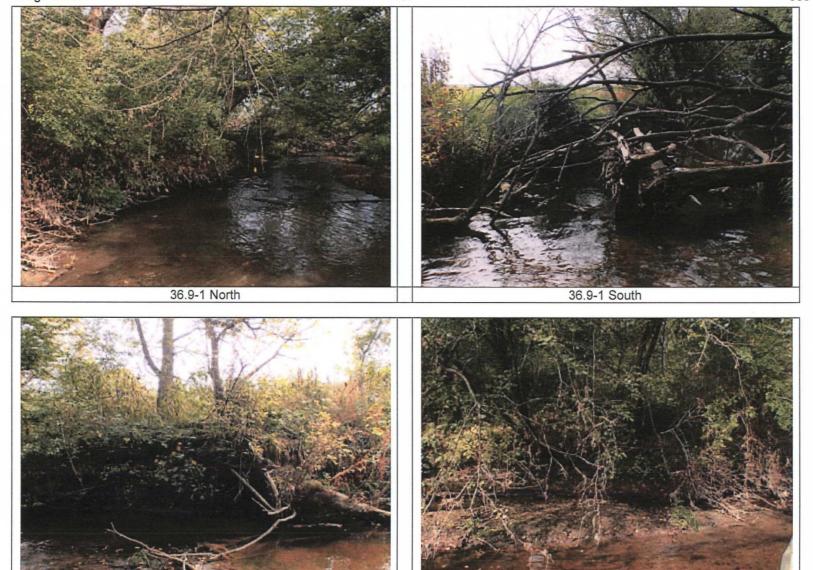



36.3 Upstream

36.3 Downstream Right



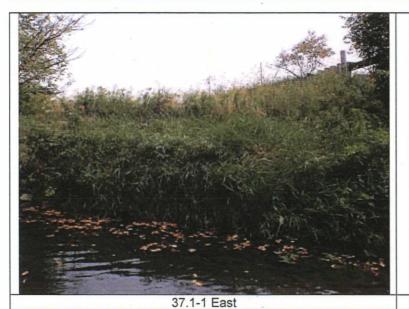
36.7-2 West


36.7-2 East

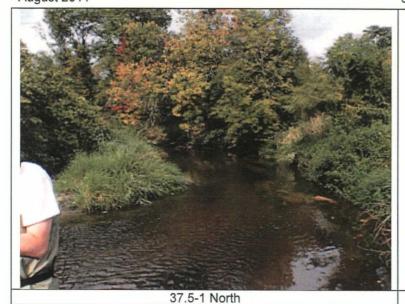
36.8-1 West

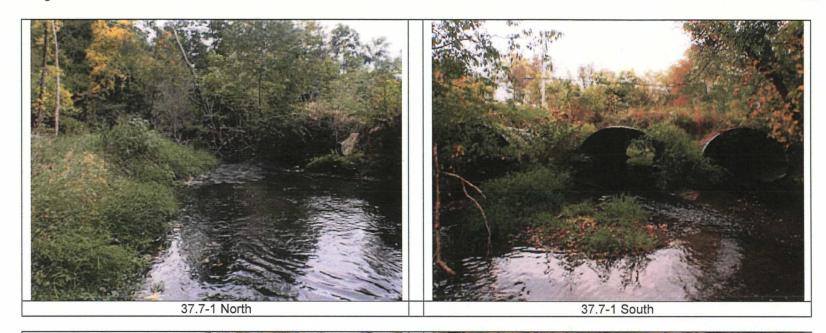

36.8-1 East

36.9-1 West


36.9-1 East

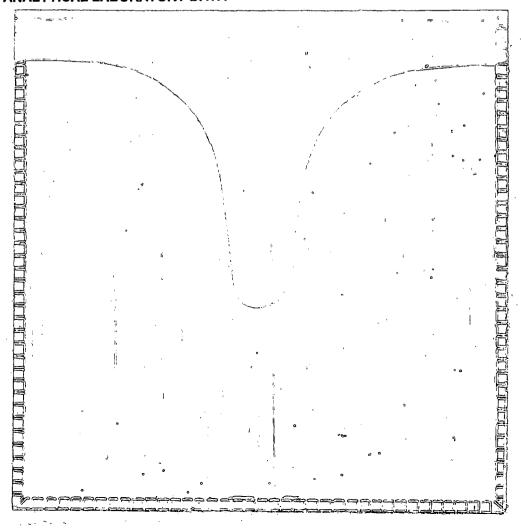








Golder



APPENDIX B

ANALYTICAL LABORATORY DATA

Client Sample ID: SD10-31.7L-0-4

GC Semivolatiles

Lot-Sample #: A0I130456-001	Work Order #:	L6WGD1AE	Matrix SO
Date Sampled: 09/08/10 16:30	Date Received:	09/10/10	
Prep Date: 09/17/10	Analysis Date:	09/24/10	
Prep Batch #: 0260032			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 40	Method:	SW846 8081B	. 1
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	80 J	55	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	•
Tetrachloro-m-xylene	72 DIL	(31 - 131)	
Decachlorobiphenyl	72 DIL	(18 - 145)	•

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: SD10-31.1R-0-2

GC Semivolatiles

Lot-Sample #: A0I130	0456-002 Work O	rder #: L6WGN1	AE Matri	x SO
Date Sampled: 09/08,	/10 12:15 Date Re	eceived: 09/10/	/10	
Prep Date: 09/17	/10 Analys:	is Date: 09/24/	/10	
Prep Batch #: 026003	32			
Dilution Factor: 10	Initia	l Wgt/Vol: 29.95	g Final	Wgt/Vol: 10 mL
% Moisture: 41	Method:	SW846	8081B	
		REPORT	TING	
PARAMETER	RESULT	LIMIT	UNITS	
Mirex	86 J	56	ug/kg	
	PERCENT	T RECOVE	ERY	
SURROGATE	RECOVE	RY LIMITS	3	
Tetrachloro-m-xylene	88 DIL	(31 -	131)	
Decachlorobiphenyl	99 DIL	(18 -	145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: SD10-31.4R-0-6

GC Semivolatiles

Lot-Sample #:	A0I130456-003	Work Order #:	L6WGQ1AE	Matrix SO
Date Sampled:	09/08/10 15:20	Date Received:	09/10/10	
Prep Date:	09/17/10	Analysis Date:	09/21/10	
Prep Batch #:	0260032			
Dilution Factor:	100	<pre>Initial Wgt/Vol:</pre>	30.2 g	Final Wgt/Vol: 10 mL
% Moisture:	31	Method:	SW846 8081	В
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Mirex		600 J	480	ug/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xyl	Lene	121 DIL	(31 - 131)	
Decachlorobipheny	71	120 DIL	(18 - 145)	

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-31.2L-0-4

GC Semivolatiles

Lot-Sample #: A0I130456-004	Work Order #:	L6WGR1AE	Matrix SO
Date Sampled: 09/08/10 13:10	Date Received:	09/10/10	
Prep Date: 09/17/10	Analysis Date:	09/27/10	
Prep Batch #: 0260032			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30 g	Final Wgt/Vol: 10 mL
% Moisture: 60	Method:	SW846 8081	3
•		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	190 J	82	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	85 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	93 DIL	(18 - 145)	
NOTE (S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-31.8-0-4

GC Semivolatiles

Lot-Sample #: A0	I130456-005 W	ork Order #	: L6WGT1AE	Matrix		SO
Date Sampled: 09	/08/10 17:25 D	ate Received	: 09/10/10			
Prep Date: 09)/17/10 A	nalysis Date	: 09/24/10			
Prep Batch #: 02	60032					-
Dilution Factor: 5	I	nitial Wgt/Vol:	: 30.08 g	Final	Wgt/Vol:	10 mL
% Moisture: 44	M	lethod	: SW846 8081	В		٠
			REPORTING			
PARAMETER	R	ESULT	LIMIT	UNITS		
Mirex	3	4 J	30	ug/kg		
	P	ERCENT	RECOVERY			
SURROGATE	R	ECOVERY	LIMITS			
Tetrachloro-m-xylene	e 7	9 DIL	(31 - 131)			
Decachlorobiphenyl	9	0 DIL	(18 - 145)			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: SD10-31.3R-0-6

GC Semivolatiles

Lot-Sample #: A0I130456-006	Work Order #:	L6WGV1AE	Matrix SO
Date Sampled: 09/08/10 14:15	Date Received:	09/10/10	
Prep Date: 09/17/10	Analysis Date:	09/27/10	
Prep Batch #: 0260032			
Dilution Factor: 2	<pre>Initial Wgt/Vol:</pre>	30.18 g	Final Wgt/Vol: 10 mL
% Moisture: 48	Method:	SW846 8081	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	26 J	13	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
			
Tetrachloro-m-xylene	78	(31 - 131)	
Decachlorobiphenyl	86	(18 - 145)	

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: SD10-32.0-0-6

GC Semivolatiles

Lot-Sample #:	A0I130456-007	Work Order #:	L6WGX1AE	Matrix SO
Date Sampled:	09/08/10 19:00	Date Received:	09/10/10	
Prep Date:	09/17/10	Analysis Date:	09/27/10	
Prep Batch #:	0260032			
Dilution Factor:	10	<pre>Initial Wgt/Vol:</pre>	30.17 g	Final Wgt/Vol: 10 mL
% Moisture:	53	Method:	SW846 8081	В
PARAMETER		RESULT	REPORTING LIMIT	UNITS
Mirex		110 J	70	ug/kg
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xyl	Lene	81 DIL	(31 - 131)	
Decachlorobipheny	71	96 DIL	(18 - 145)	

NOTE(S):

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: SD10-32.1R-0-1

GC Semivolatiles

Lot-Sample #: A0I130456-008			Matrix SO
Date Sampled: 09/09/10 09:0	<pre>0 Date Received:</pre>	09/10/10	•
Prep Date: 09/17/10	Analysis Date:	09/24/10	
Prep Batch #: 0260032			
Dilution Factor: 5	Initial Wgt/Vol:	30.06 g	Final Wgt/Vol: 10 mL
% Moisture: 61	Method:	SW846 8081	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	77 5	42	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	68 DIL	(31 - 131)	
Decachlorobiphenyl	74 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: SD10-32.2L-0-1

GC Semivolatiles

Lot-Sample #:	A0I130456-009	Work	Order #:	L6WG31AE	Matri:	x	SO
Date Sampled:	09/09/10 09:50	Date	Received:	09/10/10			
Prep Date:	09/17/10	Anal	ysis Date:	09/27/10			
Prep Batch #:	0260032						
Dilution Factor:	2	Init	ial Wgt/Vol:	30.06 g	Final	₩gt/Vol:	10 mL
% Moisture:	57	Meth	od:	SW846 8081	В		
				REPORTING			
PARAMETER		RESU	ULT	LIMIT	UNITS		
Mirex		37	J	15	ug/kg		
			N to the trans				
		PERC		RECOVERY			
SURROGATE	<u>.</u>	RECC	VERY	LIMITS			
Tetrachloro-m-xyl	lene	64		(31 - 131)			
Decachlorobipheny	γl	78		(18 - 145)			

NOTE(S):

Client Sample ID: SD10-32.3L-0-6

GC Semivolatiles

Lot-Sample #: A01130456	6-010 Work Order #:	L6WG71AE	Matrix: SO
Date Sampled: 09/09/10	10:45 Date Received:	09/10/10	
Prep Date: 09/17/10	Analysis Date:	09/24/10	
Prep Batch #: 0260032			
Dilution Factor: 5	Initial Wgt/Vol:	30.19 g	Final Wgt/Vol: 10 mL
% Moisture: 53	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	56 J	35	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	75 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	85 DIL	(18 - 145)	
NOTE (S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: SD10-33.0R-0-2

GC Semivolatiles

Lot-Sample #: A0I130	456-011 Work Orde	r #: L6WHA1AE	Matri:	x SO
Date Sampled: 09/09/	10 13:50 Date Rece	ived: 09/10/10)	4
Prep Date: 09/17/	10 Analysis	Date: 09/24/10)	
Prep Batch #: 026003	2			
Dilution Factor: 5	Initial W	Igt/Vol: 30.17 g	Final	Wgt/Vol: 10 mL
% Moisture: 63	Method	: SW846 80)81B	
		REPORTIN	IG .	
PARAMETER	RESULT	LIMIT	UNITS	
Mirex	57 J	44	ug/kg	
	PERCENT	RECOVERY	?	
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	80 DIL	(31 - 13	31)	
${ t Decachlorobiphenyl}$	90 DIL	(18 - 14	15)	
NOTE(S):				_

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-33.1L-0-4

GC Semivolatiles

Lot-Sample #: A0I130456-012	Work Order #:	L6WHD1AE	Matrix SO
Date Sampled: 09/09/10 14:40	Date Received:	09/10/10	
Prep Date: 09/17/10	Analysis Date:	09/24/10	
Prep Batch #: 0260032			
Dilution Factor: 20	<pre>Initial Wgt/Vol:</pre>	29.99 g	Final Wgt/Vol: 10 mL
% Moisture: 54	Method:	SW846 8081B	- -
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	170 J	140	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	84 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	72 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: SD10-32.9R-0-3

GC Semivolatiles

Lot-Sample #:	A0I130456-013	Work Order #:	L6WHE1AD	Matrix SO
Date Sampled:	09/09/10 13:10	Date Received:	09/10/10	
Prep Date:	09/17/10	Analysis Date:	09/24/10	
Prep Batch #:	0260032			
Dilution Factor:	10	<pre>Initial Wgt/Vol:</pre>	30.05 g	Final Wgt/Vol: 10 mL
% Moisture:	52	Method:	SW846 8081	В
•			REPORTING	
PARAMETER	·	RESULT	LIMIT	UNITS
Mirex		110 丁	69	ug/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xyl	ene	81 DIL	$\overline{(31 - 131)}$	
Decachlorobipheny	r1	76 DIL	(18 - 145)	

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-DUP-01

GC Semivolatiles

Lot-Sample #: A0I130456-014			Matrix SO
Date Sampled: 09/09/10 14:4	O Date Received:	09/10/10	
Prep Date: 09/17/10	Analysis Date:	09/24/10	
Prep Batch #: 0260032			
Dilution Factor: 20	Initial Wgt/Vol:	30.11 g	Final Wgt/Vol: 10 mL
% Moisture: 56	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	250 J	150	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	94 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	96 DIL	(18 - 145)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: SD10-31.7L-0-4

General Chemistry

Lot-Sample #...: A0I130456-001

Work Order #...: L6WGD

Matrix....: SO

Date Sampled...: 09/08/10 16:30 Date Received..: 09/10/10

% Moisture....: 40

					PREPARATION-	PREP
PARAMETER	RESULT	RL_	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Solids	60.0	10.0	8	MCAWW 160.3 MOD	09/13-09/14/10	0256335
	D:	ilution Fac	tor: 1			
Total Organic	13000	1700	mg/kg	MSA WALKLEY-BLACE	09/17/10	0260201

Carbon

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-31.1R-0-2

General Chemistry

Lot-Sample #...: A0I130456-002 **Work Order** #...: L6WGN **Matrix.....**: S0

Date Sampled...: 09/08/10 12:15 Date Received..: 09/10/10

% Moisture....: 41

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	58.9	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	15000	1700 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-31.4R-0-6

General Chemistry

Lot-Sample #...: A0I130456-003 Work Order #...: L6WGQ Matrix.....: SO

Date Sampled...: 09/08/10 15:20 Date Received..: 09/10/10

% Moisture....: 31

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	69.2	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	6300	1400 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-31.2L-0-4

General Chemistry

Lot-Sample #...: A0I130456-004

Work Order #...: L6WGR

Date Sampled...: 09/08/10 13:10 Date Received..: 09/10/10

% Moisture....: 60

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	40.3	10.0 ilution Fac	% tor: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	10000	2500	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-31.8-0-4

General Chemistry

Lot-Sample #...: A0I130456-005 Work Order #...: L6WGT Matrix.....: SO

Date Sampled...: 09/08/10 17:25 Date Received..: 09/10/10

% Moisture....: 44

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	55.8	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	14000	1800 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/17/10	0260201

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-31.3R-0-6

General Chemistry

Lot-Sample #...: A0I130456-006 Work Order #...: L6WGV Matrix.....: SO

Date Sampled...: 09/08/10 14:15 Date Received..: 09/10/10

% Moisture....: 48

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	52.4 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	4500	1900 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/17/10	0260201

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-32.0-0-6

General Chemistry

Lot-Sample #...: A0I130456-007

Work Order #...: L6WGX

Matrix....: SO

Date Sampled...: 09/08/10 19:00 Date Received..: 09/10/10

% Moisture....: 53

PARAMETER	RESULT	RL .	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	47.0	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	20000 Dilu	11000	mg/kg	MSA WALKLEY-BLACK	09/17/10	0260201

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-32.1R-0-1

General Chemistry

Lot-Sample #...: A0I130456-008 Work Order #...: L6WG1 Matrix.....: S0

Date Sampled...: 09/09/10 09:00 Date Received..: 09/10/10

% Moisture....: 61

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	39.5	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	32000	2500 ution Facto	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
(-)						

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-32.2L-0-1

General Chemistry

Lot-Sample #...: A0I130456-009 Work Order #...: L6WG3

Date Sampled...: 09/09/10 09:50 Date Received..: 09/10/10

Matrix....: SO

% Moisture....: 57

PARAMETER	RESULT	RL	<u>UNITS</u>	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #			
Percent Solids	42.9	10.0	¥	MCAWW 160.3 MOD	09/13-09/14/10	0256335			
	Dilution Factor: 1								
Total Organic Carbon	26000	2300	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142			
	Dil	ution Fact	or: 1						

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-32.3L-0-6

General Chemistry

Lot-Sample #...: A0I130456-010 Work Order #...: L6WG7 Matrix.....: S0

Date Sampled...: 09/09/10 10:45 Date Received..: 09/10/10

% Moisture....: 53

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	47.3	10.0	ቼ or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
	DII	1000	J			
Total Organic Carbon	23000	2100	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
	Dil	ution Facto	or: 1			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-33.0R-0-2

General Chemistry

Matrix....: SO

Lot-Sample #...: A0I130456-011 Work Order #...: L6WHA

Date Sampled...: 09/09/10 13:50 Date Received..: 09/10/10

% Moisture....: 63

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	37.3	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	20000	13000	mg/kg	MSA WALKLEY-BLACK	09/17/10	0260201

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-33.1L-0-4

General Chemistry

Matrix..... SO

Lot-Sample #...: A0I130456-012 Work Order #...: L6WHD

Date Sampled...: 09/09/10 14:40 Date Received..: 09/10/10

% Moisture....: 54

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	45.6	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	29000	2200 ution Facto	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
MOMEL(G)						

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-32.9R-0-3

General Chemistry

Matrix....: SO

Lot-Sample #...: A0I130456-013 Work Order #...: L6WHE

Date Sampled...: 09/09/10 13:10 Date Received..: 09/10/10

% Moisture....: 52

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	48.2	10.0 ution Facto	% or; 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	9600	2100	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-DUP-01

General Chemistry

Lot-Sample #...: A0I130456-014 Work Order #...: L6WHH Matrix.....: SO

Date Sampled...: 09/09/10 14:40 Date Received..: 09/10/10

% Moisture....: 56

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	43.9 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/13-09/14/10	0256335
Total Organic Carbon	29000	2300 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
-xomp (a)						

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-32.0C-0-3

General Chemistry

Matrix....: SO

Lot-Sample #...: A0I130456-015 Work Order #...: L6WHJ

Date Sampled...: 09/08/10 19:25 Date Received..: 09/10/10

% Moisture....: 25

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	74.7	10.0 ution Facto	ቴ or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279271
Total Organic Carbon	540 pt J	1300 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

RL Reporting Limit

Client Sample ID: SD10-31.9C-0-4

General Chemistry

Lot-Sample #...: A0I130456-016 Work Order #...: L6WHL

er #...: L6WHL Matrix..... SO

Date Sampled...: 09/08/10 18:15 Date Received..: 09/10/10

% Moisture....: 24

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	76.0	10.0 ution Fact	% or: 1	MCAWW 1.60.3 MOD	10/06-10/07/10	0279271
Total Organic Carbon	ND Dil	1300 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303
MOTE (C)						

NOTE(S):

RL Reporting Limit
Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-32.9C-0-3

General Chemistry

Lot-Sample #...: A0I130456-017 Work Order #...: L6WHM Matrix.....: S0

Date Sampled...: 09/09/10 12:38 Date Received..: 09/10/10

% Moisture....: 31

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	69.3	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279271
Total Organic Carbon	2300	1400 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-31.7L-0-4

Lab Sample ID:

200-1515-1

Client Matrix:

Solid

Date Sampled: 09/08/2010 1630

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

Qualifier

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-1.txt

NONE

Dilution:

1.0

Initial Weight/Volume:

221.6 g

Date Analyzed:

09/15/2010 1959

Final Weight/Volume:

NONE

Analyte	DryWt Corrected: N	Result (%)
Gravel	ENGL. 2	0.1
Sand		64.1
Coarse Sand		0.2
Medium Sand		3.6
Fine Sand		60.3
Silt		29.4 > 25.8
Clav		6.4

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-31.1R-0-2

Lab Sample ID:

200-1515-2

Client Matrix:

Solid

Date Sampled: 09/08/2010 1215

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-2.txt

Dilution:

Initial Weight/Volume:

142.9 g

Date Analyzed:

1.0

09/15/2010 2002

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0		and the second of the second o	e i vinnesse i senti all'all'all'all'all'all'all'enter i vinne ne enter al enter i e i e e e e e e e e e e e e
Sand		64.1			
Coarse Sand		0.6			
Medium Sand		9.7			
Fine Sand		53.8			
Silt		28.2 259			
Clay		28.2 7.7 35.9			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-31.4R-0-6

Lab Sample ID:

200-1515-3

09/15/2010 2026

Client Matrix:

Solid

Date Sampled: 09/08/2010 1520

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

NONE

Preparation:

Lab File ID:

200-1515-B-3.txt

Dilution:

N/A

Qualifier

1.0

Initial Weight/Volume: Final Weight/Volume:

NONE

174.61 g

Date Analyzed:

Analyte	DryWt Corrected: N	Result (%)
Gravel		0.1
Sand		61,2
Coarse Sand		0.4
Medium Sand		5.0
Fine Sand		55.8
Silt		34.1 28.7
Clay		4.6

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-31-2L-0-4

Lab Sample ID:

200-1515-4

Client Matrix:

Solid

Date Sampled: 09/08/2010 1310

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-4.txt

Dilution:

1.0

Initial Weight/Volume:

105,57 g

Date Analyzed:

09/15/2010 2029

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qua	NONE
Gravel	own room maken maken med angalam mengalam at a kada an alam sa aliku 19. dan da 3 dalah 11. ki 19. Pili ki 192	0.0		
Sand		69.2		
Coarse Sand		0.0		
Medium Sand		1.0		
Fine Sand		68.2	,	
Silt		26.3	200 \$	
Clay		4.5	DU.0	

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-31.8-0-4

Lab Sample ID:

200-1515-5

Client Matrix:

Solid

Date Sampled: 09/08/2010 1725 Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-5.txt

Dilution:

Initial Weight/Volume:

162.58 g

Date Analyzed:

1.0

09/15/2010 2032

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0,0	MAKAMI 179 ME COMMAND OF SECTION		A CONTRACTOR OF THE CONTRACTOR CONTRACTOR OF THE
Sand		54.9			
Coarse Sand		0.1			
Medium Sand		2.4			
Fine Sand		52.4			
Silt		42.2 45.1			
Clay		2.9			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-31.3-0-6

Lab Sample ID:

200-1515-6

Çlient Matrix:

Solid

Date Sampled: 09/08/2010 1415 Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File (D:

200-1515-B-6.txt

Dilution:

Initial Weight/Volume:

149.07 g

Date Analyzed:

1.0

09/15/2010 2035

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		3,0			
Sand		47.4			
Coarse Sand		0.9			
Medium Sand		3.9			
Fine Sand		42.6			
Silt		42.9 y9.6			
Clay		6.7			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-32.0-0-6

Lab Sample ID:

200-1515-7

Client Matrix:

Solid

Date Sampled: 09/08/2010 1900

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-7.txt

NONE

Dilution:

121.82 g

1.0

Initial Weight/Volume:

Qualifier

09/15/2010 2037 Date Analyzed: Date Prepared:

Final Weight/Volume:

NONE

Analyte DryWt Corrected: N Result (%) Gravel 0.0 Sand

36.7 Coarse Sand 0.3

Medium Sand 1.6 Fine Sand 34.8 Silt

Clay

55.4 63.3 7.9

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-32.1R-0-1

Lab Sample ID:

200-1515-8

09/15/2010 2040

Client Matrix:

Solid

Date Sampled: 09/09/2010 0900

Date Received: 09/14/2010 1010

D422 Grain Size

5.0

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

200-1515-B-8.1xt

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

187.36 g

Date Analyzed:

Date Prepared:

Qualifier

Final Weight/Volume:

NONE

NONE

Analyte	DryWt Corrected: N	Result (%
Gravel		0.5
Sand		34.5
Coarse Sand		0.3
Medium Sand		1,8
Fine Sand		32.4
Silt		57.3 {o
Clay	•	7.7

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A01130456

Client Sample ID:

SD10-32.2L-0-1

Lab Sample ID:

200-1515-9

Client Matrix:

Solid

Date Sampled: 09/09/2010 0950

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-9.txt

Dilution:

Initial Weight/Volume:

150.52 g

Date Analyzed:

1.0

09/15/2010 2046

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0,1			A AND CLARESCENE SERVICE OF CONTROL SERVICE SE
Sand		22.5			
Coarse Sand		0.2			
Medium Sand		1.0			
Fine Sand		21.3			
Silt		67.5 77.4			
Clay		9.9			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

\$D10-32.3L-0-6

Lab Sample ID:

200-1515-10

Client Matrix:

Solid

Date Sampled: 09/09/2010 1045

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-10.txt

Dilution:

1.0

Initial Weight/Volume:

137.44 g

Date Analyzed:

09/15/2010 2053

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	STORY OF STORY WEST STORY OF STORY STORY STORY OF STORY S	0.0			
Sand		24.5			
Coarse Sand		0.0			
Medium Sand		1.1			
Fine Sand		23.4			
Silt		67.9 75.5			
Clay		7.6			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-33.0R-0-2

Lab Sample ID:

200-1515-11

Client Matrix:

Solid

Date Sampled: 09/09/2010 1350

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-11,txt

Dilution:

1.0

Initial Weight/Volume:

197.1 g

Date Analyzed:

09/15/2010 2056

Final Weight/Volume:

Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	***************************************	3,3			4-6-5
Sand		33.8			
Coarse Sand		9.6			
Medium Sand		9.3			
Fine Sand		14.9			
Silt		57.4 62.9			
Clay		5.5			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-33.1L-0-4

Lab Sample ID:

200-1515-12

Client Matrix:

Solid

Date Sampled: 09/09/2010 1440

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-A-12.txt

Dilution:

Initial Weight/Volume:

153.66 g

Date Analyzed:

1.0

09/15/2010 2059

Final Weight/Volume:

Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			4
Sand		33.7			
Coarse Sand		0.4			
Medium Sand		4.7			
Fine Sand		28.6			
Silt		58.5 GG. 3	ı		
Clay		7.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-32.9R-0-3

Lab Sample ID:

200-1515-13

09/15/2010 2101

Client Matrix:

Solid

Date Sampled: 09/09/2010 1310

Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

4.6

Instrument ID:

Qualifier

D422_import

Preparation:

N/A

Lab File ID:

200-1515-B-13.txt

NONE

Dilution:

Clay

1.0

Initial Weight/Volume: Final Weight/Volume:

NONE

158.02 g

Date Analyzed: Date Prepared:

Result (%) Analyte DryWt Corrected: N Gravel 5.6 Sand 38,7 Coarse Sand 0.7 6,2 Medium Sand 31.8 Fine Sand Silt 51.1 55.7

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1515-1

Sdg Number: A0I130456

Client Sample ID:

SD10-DUP-01

Lab Sample ID:

200-1515-14

Client Matrix:

Solid

Date Sampled: 09/09/2010 1440 Date Received: 09/14/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-6642

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1515-A-14.bt

Dilution:

Initial Weight/Volume:

183.05 g

Date Analyzed:

1.0

09/16/2010 1854

Final Weight/Volume:

Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	and the second s	0.4			the common annual to the decision for the Maderia source of the second o
Sand		25.6			
Coarse Sand		0.2			
Medium Sand		3.8			
Fine Sand		21.6			
Silt		61.0 74.0			
Clay		13.0			

Client Sample ID: SD10-33.2L-0-6

GC Semivolatiles

Lot-Sample #: A0I150590-001 Date Sampled: 09/13/10 10:09 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 44	Method:	SW846 8081	В
PARAMETER Mirex	RESULT	REPORTING LIMIT 59	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	101 DIL	(31 - 131)	
Decachlorobiphenyl	104 DIL	(18 - 145)	
NOTE(S):			· · · · · · · · · · · · · · · · · · ·

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

29

Client Sample ID: SD10-33.5-0-4

GC Semivolatiles

Lot-Sample #: A0I150590-002 Date Sampled: 09/13/10 11:30 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 20	<pre>Initial Wqt/Vol:</pre>	30.03 g	Final Wqt/Vol: 10 mL
% Moisture: 46	Method:	SW846 8081	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	300	120	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	94 DIL	(31 - 131)	
Decachlorobiphenyl	92 DIL	(18 - 145)	

 $\label{eq:def:DIL} \textbf{DIL.} \textbf{ The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: SD10-33.6R-0-2

GC Semivolatiles

Lot-Sample #: A0II50590-00 Date Sampled: 09/13/10 13: Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 20	<pre>Initial Wgt/Vol:</pre>	30.09 g	Final Wgt/Vol.: 10 mL
% Moisture: 47	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 560	REPORTING LIMIT 120	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	110 DIL	(31 - 131)	•
Decachlorobiphenyl	93 DIL	(18 - 145)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: SD10-33.7R-0-3

GC Semivolatiles

Lot-Sample #: A0I150590-004	Work Order #:	L62JD1AE	Matrix SO
Date Sampled: 09/13/10 14:20	Date Received:	09/15/10	
Prep Date: 09/17/10	Analysis Date:	09/24/10	
Prep Batch #: 0260033			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.09 g	Final Wgt/Vol: 10 mL
% Moisture: 47	Method:	SW846 8081F	3
	•		
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	160 J	62	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	97 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	100 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-DUP2

GC Semivolatiles

Lot-Sample #: A0I150590-00 Date Sampled: 09/13/10 14: Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix: SO
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	: 30.05 g	Final Wgt/Vol: 10 mL
% Moisture: 42	Method	SW846 8081	В
PARAMETER Mirex	RESULT	REPORTING LIMIT 5.6	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	89	(31 - 131)	
Decachlorobiphenyl	105	(18 - 145)	

Client Sample ID: SD10-33.8R-0-3

GC Semivolatiles

Lot-Sample #: A0I150590-006 Date Sampled: 09/13/10 15:30 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.11 g	Final Wgt/Vol: 10 mL
% Moisture: 60	Method:	SW846 8081	3
PARAMETER Mirex	RESULT	REPORTING LIMIT 82	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	89 DIL	(31 - 131)	
Decachlorobiphenyl	70 DIL	(18 - 145)	
NOTE(S):			

 $\label{eq:def:DIL} \textbf{The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-33.9R-0-4

GC Semivolatiles

Lot-Sample #: A0I150590-00 Date Sampled: 09/13/10 16: Prep Date: 09/17/10 Prep Batch #: 0260033		: 09/15/10	Matrix SO
Dilution Factor: 20	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 56	Method	SW846 8081	- ·
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Mirex	260	150	ug/kg
	PERCENT	RECOVERY	·
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	87 DIL	(31 - 131)	
Decachlorobiphenyl	95 DIL	(18 - 145)	÷
NOTE (S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: SD10-34.4L-0-3

GC Semivolatiles

Lot-Sample #: A0I150590-008 Date Sampled: 09/14/10 10:2 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrixs0
Dilution Factor: 1	<pre>Initial Wqt/Vol:</pre>	30.02 g	Final Wqt/Vol: 10 mL
% Moisture: 49	Method:	_	5.
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	16	6.5	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	67	(31 - 131)	
Decachlorobiphenyl	81	(18 - 145)	
NOTE(S):			<u> </u>

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-34.5R-0-7

GC Semivolatiles

Lot-Sample #: A0I150590-009 Date Sampled: 09/14/10 10:55 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 1	<pre>Initial Wqt/Vol:</pre>	30.03 g	Final Wgt/Vol: 10 mL
% Moisture: 14	Method:	_	<u> </u>
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	ND	3.8	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	70	(31 - 131)	
Decachlorobiphenyl	84	(18 - 145)	
MOTE (C).			

Results and reporting limits have been adjusted for dry weight.

93

Client Sample ID: SD10-34.6L-0-3

GC Semivolatiles

Lot-Sample #: A0I150590-010 Date Sampled: 09/14/10 11:4 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix: SO
Dilution Factor: 20 % Moisture: 48	<pre>Initial Wgt/Vol: Method</pre>	_	Final Wgt/Vol: 10 mL
PARAMETER Mirex	RESULT	REPORTING LIMIT 130	UNITS ug/kg
SURROGATE Tetrachloro-m-xylene Decachlorobiphenyl	PERCENT RECOVERY 101 DIL 84 DIL	RECOVERY LIMITS (31 - 131) (18 - 145)	

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-34.8R-0-3

GC Semivolatiles

Lot-Sample #: A0I150590-01 Date Sampled: 09/14/10 12: Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 20	<pre>Initial Wgt/Vol:</pre>	30.04 g	Final Wgt/Vol: 10 mL
% Moisture: 53	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 180	REPORTING LIMIT 140	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	87 DIL	(31 - 131)	
Decachlorobiphenyl	97 DIL	(18 - 145)	
Norma (d)			

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-34.9L-0-2

GC Semivolatiles

Lot-Sample #: A0I150590-012	Work Order #:	L62J41AE	Matrix: SO
Date Sampled: 09/14/10 13:30	Date Received:	09/15/10	
Prep Date: 09/17/10	Analysis Date:	09/22/10	
Prep Batch #: 0260033			
Dilution Factor: 100	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 39	Method:	SW846 8081	В
	·	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	830	540	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	•
Tetrachloro-m-xylene	105 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	102 DIL	(18 - 145)	
~		(18 - 145)	

NOTE(S):

 $[\]label{eq:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: SD10-35.1R-0-2

GC Semivolatiles

Lot-Sample #: A0I150590-013 Date Sampled: 09/14/10 14:10 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 54	Method:	SW846 8081	В
PARAMETER Mirex	RESULT	REPORTING LIMIT 71	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS _	
Tetrachloro-m-xylene	90 DIL	(31 - 131)	
Decachlorobiphenyl	88 DIL	(18 - 145)	•
NOTE(S):			

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: SD10-35.2L-0-1

GC Semivolatiles

Lot-Sample #: A0I150590-014 Date Sampled: 09/14/10 14:56			Matrix SO
Prep Date: 09/17/10	Analysis Date:	, , -	
Prep Batch #: 0260033	•		
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30 g	Final Wgt/Vol: 10 mL
% Moisture: 53	Method:	SW846 8081E	3
	•	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	170	71	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	69 DIL	(31 - 131)	
Decachlorobiphenyl	84 DIL	(18 - 145)	
MONTH (a)			

 $[\]label{eq:def:DIL} \textbf{DIL.} \textbf{The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-36.6L-0-2

GC Semivolatiles

Lot-Sample #: A0I150590-015 Date Sampled: 09/14/10 18:25 Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 20	<pre>Initial Wgt/Vol:</pre>	30.06 gr	Final Wgt/Vol: 10 mL
% Moisture: 49	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 540	REPORTING LIMIT 130	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	104 DIL	(31 - 131)	
Decachlorobiphenyl	100 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-33.8C-0-2

GC Semivolatiles

Lot-Sample #: A0I150590-016 Date Sampled: 09/13/10 15:15 Prep Date: 09/17/10 Prep Batch #: 0260033	==	09/15/10	Matrix SO
Dilution Factor: 20	Initial Wgt/Vol:	30.03 g	Final Wgt/Vol: 10 mL
% Moisture: 23	Method:	SW846 8081E	3
PARAMETER Mirex	RESULT		UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	106 DIL	(31 - 131)	
Decachlorobiphenyl	111 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-35.4C-0-4

GC Semivolatiles

Lot-Sample #: A0I150590-01 Date Sampled: 09/14/10 15: Prep Date: 09/17/10 Prep Batch #: 0260033		09/15/10	Matrix SO
Dilution Factor: 100	<pre>Initial Wgt/Vol:</pre>	30.03 g	Final Wgt/Vol: 10 mL
% Moisture: 26	Method:	SW846 80811	В
PARAMETER	RESULT	REPORTING	UNITS
Mirex	1100	450	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	104 DIL	(31 - 131)	
Decachlorobiphenyl	114 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: SD10-33.2L-0-6

General Chemistry

Lot-Sample #...: A01150590-001 Work Order #...: L62HE Matrix.....: S0

Date Sampled...: 09/13/10 10:05 Date Received..: 09/15/10

% Moisture....: 44

PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #
Percent Solids 56.4 10.0 % MCAWW 160.3 MOD 09/16-09/17/10 0259267

Dilution Factor: 1

Total Organic 11000 1800 mg/kg MSA WALKLEY-BLACK 09/22/10 0265142

Carbon

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: SD10-33.5-0-4

General Chemistry

Lot-Sample #...: A0I150590-002 Work Order #...: L62H5 Matrix..... SO

Date Sampled...: 09/13/10 11:30 Date Received..: 09/15/10

% Moisture....: 46

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	53.6 Di	10.0 lution Fact	% tor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	18000	1900	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-33.6R-0-2

General Chemistry

Lot-Sample #...: A0I150590-003 Work Order #...: L62JA Matrix.....: S0

Date Sampled...: 09/13/10 13:15 Date Received..: 09/15/10

% Moisture....: 47

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	52.9	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	15000	1900	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
	Dilı	ution Facto	or: 1			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-33.7R-0-3

General Chemistry

Lot-Sample #...: A0I150590-004

Work Order #...: L62JD

Matrix..... SO

Date Sampled...: 09/13/10 14:20 Date Received..: 09/15/10

% Moisture....: 47

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	53.0	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	21000	1900 ution Facto	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-DUP2

General Chemistry

Lot-Sample #...: A0I150590-005 Work Order #...: L62JG

Matrix..... SO

Date Sampled...: 09/13/10 14:20 Date Received..: 09/15/10

% Moisture....: 42

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	58.5	10.0 ution Fact	용 or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic	16000	1700	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
Carbon	Dil	ution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-33.8R-0-3

General Chemistry

Lot-Sample #...: A0I150590-006 Work Order #...: L62JL

Matrix..... SO

Date Sampled...: 09/13/10 15:30 Date Received..: 09/15/10

% Moisture....: 60

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	40.3	10.0 ilution Fac	% tor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	- 11000	2500 ilution Fac	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-33.9R-0-4

General Chemistry

Lot-Sample #...: A0I150590-007

Work Order #...: L62JN

Matrix..... SO

Date Sampled...: 09/13/10 16:00 Date Received..: 09/15/10

% Moisture....: 56

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	44.3 pil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	27000	2300	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-34.4L-0-3

General Chemistry

Lot-Sample #...: A0I150590-008

Work Order #...: L62JR

Matrix....: SO

Date Sampled...: 09/14/10 10:20 Date Received..: 09/15/10

% Moisture....: 49

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	50.8	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	16000	2000	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
	Dil	ution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-34.5R-0-7

General Chemistry

Lot-Sample #...: A0I150590-009 **Work Order #...:** L62JW

Matrix..... SO

Date Sampled...: 09/14/10 10:55 Date Received..: 09/15/10

% Moisture....: 14

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	85.7	10.0	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic	3000	1200	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
Carbon	Dil	lution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-34.6L-0-3

General Chemistry

Lot-Sample #...: A0I150590-010 Work Order #...: L62JX

Matrix....: SO

Date Sampled...: 09/14/10 11:40 Date Received..: 09/15/10

% Moisture....: 48

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	51.7	10.0 lution Fact	% tor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	17000	1900	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265142
	Di	lution Fact	tor: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-34.8R-0-3

General Chemistry

Lot-Sample #...: A0I150590-011 Work Order #...: L62J2

1 Work Order #...: L62J2 Matrix.....: SO

Date Sampled...: 09/14/10 12:30 Date Received..: 09/15/10

% Moisture....: 53

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	47.4 Di	10.0 lution Fac	% tor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	24000	2100	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144
	Di	lution Fac	tor: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-34.9L-0-2

General Chemistry

Lot-Sample #...: A0I150590-012

Work Order #...: L62J4

Matrix..... SO

Date Sampled...: 09/14/10 13:30 Date Received..: 09/15/10

% Moisture....: 39

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	60.6	10.0 lution Fact	% cor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	19000	1700 lution Fact	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-35.1R-0-2

General Chemistry

Lot-Sample #...: A0I150590-013 Work Order #...: L62J5

Matrix..... SO

Date Sampled...: 09/14/10 14:10 Date Received..: 09/15/10

% Moisture....: 54

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	46.3 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic Carbon	23000 Dil	2200 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-35.2L-0-1

General Chemistry

Lot-Sample #...: A0I150590-014

Work Order #...: L62J6

Matrix..... SO

Date Sampled...: 09/14/10 14:50 Date Received..: 09/15/10

% Moisture....: 53

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	46.5	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259267
Total Organic	23000	2100	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144
Carbon	Dilı	ution Facto	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-36.6L-0-2

General Chemistry

Lot-Sample #...: A0I150590-015 Work Order #...: L62J7

Matrix..... SO

Date Sampled...: 09/14/10 18:25 Date Received..: 09/15/10

% Moisture....: 49

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	50.8	10.0 Llution Fac	% tor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259296
Total Organic Carbon	15000	2000	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144
	Dá	llution Fac	tor: 1			

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-33.8C-0-2

General Chemistry

Lot-Sample #...: A0I150590-016

Work Order #...: L62J8

Matrix....: SO

Date Sampled...: 09/13/10 15:15 Date Received..: 09/15/10

% **Moisture....:** 23

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	76.5	10.0	% or: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259296
Total Organic Carbon	2500	1300	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: SD10-35.4C-0-4

General Chemistry

Lot-Sample #...: A0I150590-017

Work Order #...: L62J9

Matrix..... SO

Date Sampled...: 09/14/10 15:55 Date Received..: 09/15/10

% Moisture....: 26

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	73.9	10.0 Lution Fact	% cor: 1	MCAWW 160.3 MOD	09/16-09/17/10	0259296
Total Organic Carbon	3500	1400 lution Fact	mg/kg	MSA WALKLEY-BLACK	09/22/10	0265144

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.2L-0-6

Lab Sample ID:

200-1566-1

Client Matrix:

Solid

Date Sampled: 09/13/2010 1005 Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-1.txt

Dilution:

Initial Weight/Volume:

120.58 g

Date Analyzed:

1.0

09/17/2010 1740

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0		W 1	
Sand		50.2			
Coarse Sand		0.5			
Medium Sand		2.0			
Fine Sand		47.7			
Silt		45.0 4.8 4 49.	4		
Clay		4.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.5-0-4

Lab Sample ID:

200-1566-2

Client Matrix:

Solid

Date Sampled: 09/13/2010 1130

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

200-1566-A-2,txt

N/A

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

117.78 g

Date Analyzed:

09/17/2010 1742

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		4.3			
Sand		57.2			
Coarse Sand		1.5			
Medium Sand		6.8			
Fine Sand		48.9			
Silt		30.0 ₃₈ .5			
Clay		30.0 38.5 8.5			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.6R-0-2

Lab Sample ID:

200-1566-3

Client Matrix:

Solid

Date Sampled: 09/13/2010 1315

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-B-3.txt

Dilution:

Initial Weight/Volume:

101.43 g

Date Analyzed:

1.0

09/17/2010 1745

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0	CONTROL CONTROL OF THE STATE OF	***************************************	
Sand		55.6			
Coarse Sand		0.0			
Medium Sand		4.0			
Fine Sand		51.6			
Silt		37.1 44.4			
Clay		7.3			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.7R-0-3

Lab Sample ID:

200-1566-4

Client Matrix:

Solid

Date Sampled: 09/13/2010 1420 Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-4.txt

Dilution:

1.0

Initial Weight/Volume:

90.34 g

Date Analyzed: Date Prepared:

09/17/2010 1747

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	AL SON LOUIS CONTRACTOR OF THE	0.3	The second secon	V 3 *** V 1 *** T 1 *** V 1 **	
Sand		46.7			
Coarse Sand		0.4			
Medium Sand		2.9			
Fine Sand		43.4			
Silt		47.6 53.0			
Clay		5.4			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-DUP2

Lab Sample ID:

200-1566-5

Client Matrix:

Solid

Date Sampled: 09/13/2010 1420

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File (D:

200-1566-C-5.txt

Dilution:

1.0

Initial Weight/Volume:

97.09 g

Date Analyzed:

09/17/2010 1749

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	A. Maria A.	0.0			COLUMN TO COMPANY CONTRACTOR CONT
Sand		47.2			
Coarse Sand		1.0			
Medium Sand		3.1			
Fine Sand		43.1			
Sift		44.7 528			
Clay		8.1			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.8R-0-3

Lab Sample ID:

200-1566-6

Client Matrix:

Solid

Date Sampled: 09/13/2010 1530 Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-6.txt

Dilution:

Initial Weight/Volume:

109.35 g

Date Analyzed:

1.0

09/17/2010 1751

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0	of the state of th		
Sand		30.3			
Coarse Sand		0.6	4		
Medium Sand		4.9			
Fine Sand		24.8			
Silt		59.3 G9.7			
Clay		10.4			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.9R-0-4

Lab Sample ID:

200-1566-7

Client Matrix:

Solid

Date Sampled: 09/13/2010 1600 Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-B-7.txt

Dilution:

Initial Weight/Volume:

90.11 g

Date Analyzed:

1.0

09/17/2010 1753

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			
Sand		29.3			
Coarse Sand		0.0			
Medium Sand		0.5			
Fine Sand		28.8			
Silt		62.7 8.0 子の・オ			
Clay		8.0			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-34.4L-0-3

Lab Sample ID:

200-1566-8

Client Matrix:

Solid

Date Sampled: 09/14/2010 1020

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-8.txt

Initial Weight/Volume:

92.5 g

Dilution: Date Analyzed: 1.0

09/17/2010 1754

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			
Sand		52.0			
Coarse Sand		0.9			
Medium Sand		5,1			
Fine Sand		46.0			
Silt		42.4 48 O			
Clay		42.4 48.0 5.6			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-34.5R-0-7

Lab Sample ID:

200-1566-9

Client Matrix:

Solid

Date Sampled: 09/14/2010 1055

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

200-1566-B-9,txt

Dilution:

Lab File ID:

1.0

Initial Weight/Volume:

65.88 g

Date Analyzed: Date Prepared:

09/17/2010 1756

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	***************************************	15,5		***************************************	
Sand		35,9			
Coarse Sand		5.0			
Medium Sand		8.7			
Fine Sand		22.2			
Silt		34.1 U8.6			
Clay		14.5			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-34.6L-0-3

Lab Sample ID:

200-1566-10

Client Matrix:

Solid

Date Sampled: 09/14/2010 1140

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-10.txt

Dilution:

1.0

Initial Weight/Volume:

97.36 g

Date Analyzed:

09/17/2010 1757

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.1	A B CAMBO TO PROTECTION OF THE STATE OF THE	Commence and the Commence of Commence of the Commence of Commence	A STATE OF THE PROPERTY OF THE PROPERTY PROPERTY OF THE PROPER
Sand		53.5			
Coarse Sand		0.3			
Medium Sand		1.3			
Fine Sand		51.9 \			
Silt		40.6 Ub. 17			
Clay		5.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-34.8R-0-3

Lab Sample ID:

200-1566-11

Client Matrix:

Solid

Date Sampled: 09/14/2010 1230

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-C-11.txt

Dilution:

Initial Weight/Volume:

107.1 g

Date Analyzed:

1.0 09/17/2010 1800

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			
Sand		30.8			
Coarse Sand		0.0			
Medium Sand		1.4			
Fine Sand		29.4			
Silt		56.4 gail			
Clay		12.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-34.9L-0-2

Lab Sample ID:

200-1566-12

Client Matrix:

Solid

Date Sampled: 09/14/2010 1330

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-B-12.txt

Dilution:

1.0

Initial Weight/Volume:

93.32 g

Date Analyzed:

09/17/2010 1814

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			
Sand		57.1			
Coarse Sand		1.6			
Medium Sand		5.5			
Fine Sand		50.0			
Şilt		33.8			
Clay		9.1			
•					

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-35.1R-0-2

Lab Sample ID:

200-1566-13

09/17/2010 1816

Client Matrix:

Solid

Date Sampled: 09/14/2010 1410

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-13.txt

82.38 g

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0,0	AND DELENCE OF WHITE DAYS OF THE LEADING TOP	A.12 TOWN TO ASSESS WAS INCOME.	
Sand		45.4			
Coarse Sand		0.0			
Medium Sand		4.1			
Fine Sand		41.3			
Silt		43.4 54.6			
Clay		11.2			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-35.2L-0-1

Lab Sample ID:

200-1566-14

Client Matrix:

Solid

09/17/2010 1818

Date Sampled: 09/14/2010 1450

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-B-14.txt

NONE

Dilution:

Date Analyzed:

1.0

Initial Weight/Volume: Final Weight/Volume:

97.83 g

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE
Gravel		0.4		
Sand		45.9		
Coarse Sand		0,5		
Medium Sand		4,9		
Fine Sand		40.5		
Silt		45.1 65 ^{.^}		
Clay		8.6		

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-36.6L-0-2

Lab Sample ID:

200-1566-15

Client Matrix:

Solid

Date Sampled: 09/14/2010 1825

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-A-15.txt

Dilution:

1.0

Initial Weight/Volume:

87.74 g

Date Analyzed:

09/17/2010 1820

Final Weight/Volume:

Analyte	DryWl Corrected: N	Result (%)		Qualifier	NONE	NONE
Gravel	The second secon	0.0			- C	
Sand		54.8				
Coarse Sand		0.0				
Medium Sand		4.8				
Fine Sand		50.0	Λ			
Silit		36.1	ur. V			
Clay		9.1	-(·			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-33.8C-0-2

Lab Sample ID:

200-1566-16

Client Matrix:

Solid

Date Sampled: 09/13/2010 1515

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

200-1566-B-16,txt

Dilution:

Lab File ID: Initial Weight/Volume:

134.93 g

Date Analyzed:

1.0

09/17/2010 1822

Final Weight/Volume:

NONE

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	
Gravel	tere visit sek v	0.3	• IV (IV)		
Sand		95.9			
Coarse Sand		0.3			
Medium Sand		11.8			
Fine Sand		83.8			
Silt		2.8			
Clay		0.9 か゛			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1566-1

Sdg Number: A0I150590

Client Sample ID:

SD10-35.4C-0-4

Lab Sample ID:

200-1566-17

Client Matrix:

Solid

09/17/2010 1824

Date Sampled: 09/14/2010 1555

Date Received: 09/17/2010 1000

D422 Grain Size

Method:

D422

Analysis Batch: 200-6696

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1566-B-17.txt

188.3 g

Dilution:

1.0

Initial Weight/Volume:

Final Weight/Volume:

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		1.8	200 10 2.40		
Sand		92.9			
Coarse Sand		2.6			
Medium Sand		21.2			
Fine Sand		69.1			
Silt		3.6 / 3			
Clay		1.7 9·J			

Client Sample ID: SD10-35.7R-0-2

GC Semivolatiles

Lot-Sample #: A0I160575-001 Date Sampled: 09/15/10 09:1 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.11 g	Final Wgt/Vol.: 10 mL
% Moisture: 48	Method:	SW846 8081B	
PARAMETER Mirex	RESULT		UNITS 1g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	85 DIL	(31 - 131)	
Decachlorobiphenyl	97 DIL	(18 - 145)	•
Tom: (a)			

 $\textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes. \\$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-35.8R-0-1

GC Semivolatiles

Lot-Sample #: A0I160575-00 Date Sampled: 09/15/10 09: Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 45	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 210	REPORTING LIMIT 61	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	85 DIL	(31 - 131)	
Decachlorobiphenyl	95 DIL	(18 - 145)	
770777 (7)			•

 $\label{eq:def:DIL} \textbf{DIL.} \textbf{The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-35.9R-0-2

GC Semivolatiles

Lot-Sample #: A0I160575-003 Date Sampled: 09/15/10 10:25 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.14 g	Final Wgt/Vol: 10 mL
% Moisture: 61	Method:	SW846 8081B	
PARAMETER Mirex	RESULT 130		NITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	78 DIL	(31 - 131)	
Decachlorobiphenyl	90 DIL	(18 - 145)	
NOTE (S) :		·	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-36.0L-0-2

GC Semivolatiles

Lot-Sample #: A0I160575-004 Date Sampled: 09/15/10 11:0 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix : SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.09 g	Final Wgt/Vol: 10 mL
% Moisture: 56	Method	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	100	75	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	78 DIL	(31 - 131)	
Decachlorobiphenyl	86 DIL	(18 - 145)	
NOTE(S):			

D4L. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-36.1L-0-1

GC Semivolatiles

Lot-Sample #: A0I160575-005 Date Sampled: 09/15/10 11:5 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix SO
Dilution Factor: 5	Initial Wgt/Vol:	30.19 g	Final Wgt/Vol: 10 mL
% Moisture: 62	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 69 J	REPORTING LIMIT 44	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	50 DIL	(31 - 131)	
Decachlorobiphenyl	77 DIL	(18 - 145)	
NOTE(S):			

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-DUP3

GC Semivolatiles

Lot-Sample #: A01160575-006 Date Sampled: 09/15/10 11:54 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.04 g	Final Wgt/Vol: 10 mL
% Moisture: 62	Method:	SW846 8081F	3
PARAMETER Mirex	RESULT 290 J	REPORTING LIMIT 87	UNITS ug/kg
SURROGATE	PERCENT	RECOVERY LIMITS	
Tetrachloro-m-xylene	46 DIL	(31 - 131)	
Decachlorobiphenyl	72 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

71

Client Sample ID: SD10-36.2R-0-1

GC Semivolatiles

Lot-Sample #: A0I160575- Date Sampled: 09/15/10 1 Prep Date: 09/21/10 Prep Batch #: 0264032		.: 09/16/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vo	ol: 30.17 g	Final Wgt/Vol: 10 mL
% Moisture: 47	- •	.: SW846 8081B	3 ,
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	140	63	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	60 DIL	(31 - 131)	
Decachlorobiphenyl	62 DIL	(18 - 145)	
MOTE (C) -			

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-36.3L-0-1

GC Semivolatiles

Lot-Sample #: A0I160575-008 Date Sampled: 09/15/10 13:2 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix SO
Dilution Factor: 5	Initial Wgt/Vol:	30.2 g	Final Wgt/Vol: 10 mL
% Moisture: 58	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 65	REPORTING LIMIT 39	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	47 DIL	(31 - 131)	
${ t Decachlorobiphenyl}$	81 DIL	(18 - 145)	

 $\label{eq:distance} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-36.4L-0-2

GC Semivolatiles

Lot-Sample #: A0I160575-009 Date Sampled: 09/15/10 14:0 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix : SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30 06 a	Final Wqt/Vol: 10 mL
% Moisture: 47	Method:	_	4 •
		REPORTING	
PARAMETER	RESULT	<u>LIMIT</u>	UNITS
Mirex	120	62	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	<u>LIMITS</u>	
Tetrachloro-m-xylene	52 DIL	(31 - 131)	•
Decachlorobiphenyl	65 DIL	(18 - 145)	
NOTE(S):			

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-37.0-0-2

GC Semivolatiles

_	09/15/10 16:23 09/21/10	Work Order #: Date Received: Analysis Date:	09/16/10	Matrix SO	
Dilution Factor:	2	<pre>Initial Wgt/Vol:</pre>	30.17 g	Final Wgt/Vol: 10 ml	L
% Moisture:	51	Method	SW846 8081	В	
PARAMETER		RESULT	REPORTING	UNITS	
Mirex		24	14	ug/kg	
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS		
Tetrachloro-m-xy	lene	54	(31 - 131)		
Decachlorobiphen	yl	85	(18 - 145)		
				•	

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-37.1R-0-2

GC Semivolatiles

	_	09/16/10	Matrix : SO
Dilution Factor: 5	<pre>Initial Wgt/Vol:</pre>	30.06 g	Final Wgt/Vol: 10 mL
% Moisture: 66	Method:	SW846 8081	В
PARAMETER Mirex	RESULT	REPORTING LIMIT 49	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	49 DIL	(31 - 131)	
Decachlorobiphenyl	80 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: SD10-37.2-0-12

GC Semivolatiles

Lot-Sample #: A0I160575-012 Date Sampled: 09/15/10 17:3 Prep Date: 09/21/10 Prep Batch #: 0264032	•	09/16/10	Matrix SO
Dilution Factor: 2	<pre>Initial Wgt/Vol:</pre>	30.06 g	Final Wgt/Vol: 10 mL
% Moisture: 64	Method:	SW846 8081B	
PARAMETER Mirex	RESULT 37 J		NITS g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	26 *	(31 - 131)	
Decachlorobiphenyl	32	(18 - 145)	

NOTE (S):

* Surrogate recovery is outside stated control limits.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-37.3R-0-6

GC Semivolatiles

Lot-Sample #: A0I160575-0	13 Work Order #:	: L64E01AJ	Matrix SO
Date Sampled: 09/16/10 08	:50 Date Received:	: 09/16/10	
Prep Date: 09/21/10	Analysis Date:	: 09/25/10	
Prep Batch #: 0264032			
Dilution Factor: 10	Initial Wgt/Vol:	: 30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 66	Method	: SW846 8081B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	NITS
Mirex	190	98 ug	g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	57 DIL	(31 - 131)	
Decachlorobiphenyl	80 DIL	(18 - 145)	
·			
370mm (41)			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

 $[\]textbf{DII.} \ \textbf{The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: SD10-37.4R-0-4

GC Semivolatiles

Lot-Sample #: A0I160575-014 Date Sampled: 09/16/10 09:30 Prep Date: 09/21/10	•	09/16/10	Matrix SO
Prep Batch #: 0264032 Dilution Factor: 10	Talkini Wat /Wai	70 10	721 W /77-1 10 ml
	Initial Wgt/Vol:	_	Final Wgt/Vol: 10 mL
% Moisture: 68	Method:	SW846 8081	В
PARAMETER	RESULT	REPORTING	UNITS
Mirex	260	100	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	64 DIL	(31 - 131)	
Decachlorobiphenyl	91 DIL	(18 - 145)	
NOTE (2)			

 $\label{eq:def:DIL} \textbf{ The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-37.5R-0-6

GC Semivolatiles

Lot-Sample #: A0I160575-015 Date Sampled: 09/16/10 10:10	Date Received:	09/16/10	Matrix : SO
Prep Date: 09/21/10	Analysis Date:	09/25/10	
Prep Batch #: 0264032			
Dilution Factor: 10	Initial Wgt/Vol:	30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 68	Method:	SW846 8081E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	800 J	100	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	65 DIL	(31 - 131)	
Decachlorobiphenyl	79 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-DUP4

GC Semivolatiles

Lot-Sample #: A0I160575-016 Date Sampled: 09/16/10 10:10 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 67	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 350 J	REPORTING LIMIT 100	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	82 DIL	(31 - 131)	
Decachlorobiphenyl	88 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-37.6-0-3

GC Semivolatiles

Lot-Sample #: A0I160575-017 Date Sampled: 09/16/10 11:00 Prep Date: 09/21/10 Prep Batch #: 0264032		09/16/10	Matrix: SO
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	30.15 g	Final Wgt/Vol: 10 mL
% Moisture: 53	Method:	SW846 8081	В
PARAMETER Mirex	RESULT ND	REPORTING LIMIT 7.1	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	52	(31 - 131)	
Decachlorobiphenyl	74	(18 - 145)	
NOTE(S):			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SD10-35.7R-0-2

General Chemistry

Lot-Sample #...: A0I160575-001

Work Order #...: L64EC

Matrix..... SO

Date Sampled...: 09/15/10 09:10 Date Received..: 09/16/10

% Moisture....: 48

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 51.8
 10.0
 %
 MCAWW 160.3 MOD
 09/20-09/21/10
 0263164

Dilution Factor: 1

Total Organic

12000

1900 mg/kg

MSA WALKLEY-BLACK 09/23/10

0266079

Carbon

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-35.8R-0-1

General Chemistry

Lot-Sample #...: A0I160575-002

Work Order #...: L64EG

Matrix..... SO

Date Sampled...: 09/15/10 09:50 Date Received..: 09/16/10

% Moisture....: 45

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	54.5 Dil	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	14000	1800	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-35.9R-0-2

General Chemistry

Matrix....: SO Lot-Sample #...: A0I160575-003 Work Order #...: L64EK

Date Sampled...: 09/15/10 10:25 Date Received..: 09/16/10

% Moisture....: 61

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	39.1 pil	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	32000	2600 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

637 **North Canton**

Client Sample ID: SD10-36.0L-0-2

General Chemistry

Lot-Sample #...: A0I160575-004

Work Order #...: L64EM

Matrix....: SO

Date Sampled...: 09/15/10 11:05 Date Received..: 09/16/10

% Moisture....: 56

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH_#		
Percent Solids	43.9	10.0	8	MCAWW 160.3 MOD	09/20-09/21/10	0263164		
Dilution Factor: 1								
Total Organic Carbon	21000	2300	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079		
	Dil	ution Fact	or: 1					

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-36.1L-0-1

General Chemistry

Lot-Sample #...: A0I160575-005 Work Order #...: L64EN Matrix.....: S0

Date Sampled...: 09/15/10 11:54 Date Received..: 09/16/10

% Moisture....: 62

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	37.6	10.0	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organi <i>c</i>	33000	2700	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079
Carbon	Dil	ution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-DUP3

General Chemistry

Work Order #...: L64EP Lot-Sample #...: A0I160575-006 Matrix..... SO

Date Sampled...: 09/15/10 11:54 Date Received..: 09/16/10

% Moisture....: 62

PARAMETER	RESULT	ŖĿ	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	38.1	10.0	%	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic	34000	2600	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079
Carbon	Dil	ution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-36.2R-0-1

General Chemistry

Lot-Sample #...: A0I160575-007 Work Order #...: L64EQ Matrix.....: SO

Date Sampled...: 09/15/10 12:35 Date Received..: 09/16/10

% Moisture....: 47

PREPARATION-PREP RESULT UNITS METHOD ANALYSIS DATE BATCH # PARAMETER RЬ Percent Solids 52.5 10.0 왐 MCAWW 160.3 MOD 09/20-09/21/10 0263164 Dilution Factor: 1 Total Organic 23000 1900 mg/kg MSA WALKLEY-BLACK 09/23/10 0266079 Carbon Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: SD10-36.3L-0-1

General Chemistry

Lot-Sample #...: A0I160575-008 Work Order #...: L64ER Matrix.....: SO

Date Sampled...: 09/15/10 13:25 Date Received..: 09/16/10

% Moisture....: 58

42.2	10.0	8	MCAWW 160.3 MOD	09/20-09/21/10	0262164
Dilu	tion Facto	r: 1	TOTAL TOTAL POLICE	03/20-03/21/10	UZ63164
31000	2400	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079
	31000	31000 2400	Dilution Factor: 1 31000 2400 mg/kg Dilution Factor: 1	31000 2400 mg/kg MSA WALKLEY-BLACK	31000 2400 mg/kg MSA WALKLEY-BLACK 09/23/10

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-36.4L-0-2

General Chemistry

Matrix..... SO

Lot-Sample #...: A0I160575-009 Work Order #...: L64ET

Date Sampled...: 09/15/10 14:00 Date Received..: 09/16/10

% Moisture....: 47

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	53.1	10.0 ution Facto	왕 or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	17000	1900 ution Facto	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

North Canton 643

RL Reporting Limit

Client Sample ID: SD10-37.0-0-2

General Chemistry

Lot-Sample #...: A0I160575-010

Work Order #...: L64EV

Matrix..... SO

Date Sampled...: 09/15/10 16:23 Date Received..: 09/16/10

% Moisture....: 51

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	48.9	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	20000	2000 ution Facto	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-37.1R-0-2

General Chemistry

Lot-Sample #...: A0I160575-011 Work Order #...: L64EW Matrix.....: SO

Date Sampled...: 09/15/10 16:46 Date Received..: 09/16/10

% Moisture....: 66

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	33.7	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	35000 Dile	3000 ation Facto	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

North Canton 645

Client Sample ID: SD10-37.2-0-12

General Chemistry

Lot-Sample #...: A0I160575-012 Work Order #...: L64EX Matrix.....: SO

Date Sampled...: 09/15/10 17:35 Date Received..: 09/16/10

% Moisture....: 64

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	35.6	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	35000 Dil	2800 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

North Canton 646

Client Sample ID: SD10-37.3R-0-6

General Chemistry

Lot-Sample #...: A0I160575-013 Work Order #...: L64E0 Matrix.....: S0

Date Sampled...: 09/16/10 08:50 Date Received..: 09/16/10

% Moisture....: 66

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	33.7	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263205
Total Organic Carbon	37000 pil	3000 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-37.4R-0-4

General Chemistry

Lot-Sample #...: A0I160575-014 Work Order #...: L64E1 Matrix.....: S0

Date Sampled...: 09/16/10 09:30 Date Received..: 09/16/10

% Moisture....: 68

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	32.2 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	43000	6200 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-37.5R-0-6

General Chemistry

Lot-Sample #...: A0I160575-015 Work Order #...: L64E2 Matrix.....: SO

Date Sampled...: 09/16/10 10:10 Date Received..: 09/16/10

% Moisture....: 68

PARAMETER	RESULT	RL.	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	32.2	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263164
Total Organic Carbon	48000	6200	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE (S) :
RL Reporting Limit

Client Sample ID: SD10-DUP4

General Chemistry

Lot-Sample #...: A0I160575-016 Work Order #...: L64E3 Matrix.....: SO

Date Sampled...: 09/16/10 10:10 Date Received..: 09/16/10

% Moisture....: 67

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	32.8	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263205
Total Organic Carbon	49000	6100	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079
	D11	ution Facto	or: 2			
NOTE(S):						

RL Reporting Limit

Client Sample ID: SD10-37.6-0-3

General Chemistry

Lot-Sample #...: A0I160575-017 Work Order #...: L64E4 Matrix.....: S0

Date Sampled...: 09/16/10 11:00 Date Received..: 09/16/10

% Moisture....: 53

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	46.7 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	09/20-09/21/10	0263205
Total Organic Carbon	21000	2100 ution Fact	mg/kg	MSA WALKLEY-BLACK	09/23/10	0266079

NOTE(S):

RL Reporting Limit

SAMPLE SUMMARY

A0I160575

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
L64EC	001	SD10-35.7R-0-2	09/15/10	09:10
L64EG	002	SD10-35.8R-0-1	09/15/10	09:50
L64EK	003	SD10-35.9R-0-2	09/15/10	10:25
L64EM	004	SD10-36.0L-0-2	09/15/10	11:05
L64EN	005	SD10-36.1L-0-1	09/15/10	11:54
L64EP	006	SD10-DUP3	09/15/10	11:54
L64EQ	007	SD10-36,2R-0-1	09/15/10	12:35
L64ER	800	SD10-36.3L-0-1	09/15/10	13:25
L64ET	009	SD10-36.4L-0-2	09/15/10	14:00
L64EV	010	SD10-37.0-0-2	09/15/10	16:23
L64EW	011	SD10-37.1R-0-2	09/15/10	16:46
L64EX	012	SD10-37.2-0-12	09/15/10	17:35
L64E0	013	SD10-37.3R-0-6	09/16/10	08:50
L64E1	014	SD10-37,4R-0-4	09/16/10	09:30
L64E2	015	SD10-37.5R-0-6	09/16/10	10:10
L64E3	016	SD10-DUP4	09/16/10	10:10
L64E4	017	SD10-37.6-0-3	09/16/10	11:00

NOTE(S):

North Canton 14

⁻ The analytical results of the samples listed above are presented on the following pages.

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results.

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory.

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

L64€C 200-1593-1

S10-35.7R-0-2

Lab Sample ID:

Client Matrix: Solid Date Sampled: 09/15/2010 0910 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-1.txt

Dilution:

Initial Weight/Volume:

126.29 g

Date Analyzed:

1.0 09/20/2010 2046

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

40.4

NONE

NONE

Analyte Gravel \bigcirc (59.6) Sand Coarse Sand 0.8 Medium Sand 7.2 Fine Sand 51.6 Silt 37.0 Clay 3.4

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

S10-35.8R-0-1

Lab Sample ID:

200-1593-2

Client Matrix:

Solid

Date Sampled: 09/15/2010 0950

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

200-1593-C-2.txt

Dilution:

Lab File ID: Initial Weight/Volume:

206.27 g

Date Analyzed:

1.0

09/20/2010 2048

Final Weight/Volume:

Date Prepared:

Analyte

Clay

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand Silt

(0.4)48.5 1.0

6.8 40,7

44.1 51.1 7.0

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

Solid

SB10-35.9R-0-2

Lab Sample ID:

09/20/2010 2051

Client Matrix:

L64EK . 200-1593-3

Date Sampled: 09/15/2010 1025

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-3.txt

Dilution:

Initial Weight/Volume:

229.39 g

Date Analyzed:

1.0

Final Weight/Volume:

Date Prepared:

Analyte

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand 24.7 Coarse Sand Medium Sand 1.6 Fine Sand 23.0 Silt 70.4 5.0 Clay

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

L64FM SD10-36.0L-0-2

Lab Sample ID:

200-1593-4

Client Matrix:

Solid

Date Sampled: 09/15/2010 1105

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-4.txt

Initial Weight/Volume:

302.06 g

Dilution: Date Analyzed:

Analyte

Clay

1.0

09/20/2010 2056

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand Silt

(0.0) 39.8 0,2 4,2

35.4 53.9

6.3

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

LEGIEN SOIU-36.1 L-0-1

Lab Sample ID:

200-1593-5

Client Matrix:

Solid

Date Sampled: 09/15/2010 1154 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-5.txt

Dilution:

Initial Weight/Volume:

122.66 g

Date Analyzed:

1.0 09/20/2010 2059

Final Weight/Volume:

Date Prepared:

Analyte

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand

Silt

Clay

15.9 68.2 15.5 7

16.3

0.1 0.3

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

SD10-DUP3

Lab Sample ID:

200-1593-6

Client Matrix:

Solid

Date Sampled: 09/15/2010 1154 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-B-6.txt

Dilution:

Initial Weight/Volume:

120.08 g

Date Analyzed:

1.0

09/20/2010 2138

Final Weight/Volume:

Date Prepared:

Analyte

Clay

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand Silt

15,1 0.0 0.3 14.8 68.8 16.1 >

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

SD10-36.2R-0-1

Lab Sample ID:

200-1593-7

09/20/2010 2141

Client Matrix:

Solid

Date Sampled: 09/15/2010 1235 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-G-7.txt

Dilution:

Initial Weight/Volume:

196.41 g

1.0

Final Weight/Volume:

Date Analyzed:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Gravel Sand 36.7 Coarse Sand 0.5 1.9 Medium Sand 34.3 Fine Sand 55.2 Silt Clay

8.1

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

SD10 -36.3L-0-1

Lab Sample ID: Client Matrix:

200-1593-8

Solid

Date Sampled: 09/15/2010 1325 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-8.txt

Dilution:

Initial Weight/Volume:

204.62 g

Date Analyzed:

Analyte

Clay

1.0

09/20/2010 2147

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand Silt

(ون) (27.8 0.3 2,3

25.2

63.0 7 72 . 2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

1645 SD10-36.41L-0-2

Lab Sample ID:

200-1593-9

09/20/2010 2150

Client Matrix:

Solid

Date Sampled: 09/15/2010 1400

Date Received: 09/18/2010 0945

D422 Grain Size

7 52.6

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

200-1593-C-9.txt

Dilution:

N/A 1.0

Lab File ID:

Initial Weight/Volume: Final Weight/Volume:

204.69 g

Date Analyzed:

Date Prepared:

Qualifier

NONE

NONE

Result (%) Analyte DryWt Corrected: N Gravel (O.Đ 47.4 Sand Coarse Sand 0.2 Medium Sand 1.7 Fine Sand 45.5 Silt 46.6 Clay

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

5010-37.0-0-2

Lab Sample ID: Client Matrix:

200-1593-10

Solid

Date Sampled: 09/15/2010 1623

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-10.txt

Dilution:

1.0

Initial Weight/Volume:

241.9 g

Date Analyzed: Date Prepared:

09/20/2010 2153

Final Weight/Volume:

DryWt Corrected: N Result (%) Qualifier NONE NONE Analyte Gravel (0.0)Sand 53.g Coarse Sand 0.5 Medium Sand 4.4 48.1 Fine Sand ^{42.2} 7 Silt 47.0 Clay

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

LEAFW SDID -37. 1R-0-2

Lab Sample ID:

Client Matrix:

200-1593-11

Solid

Date Sampled: 09/15/2010 1646 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-11.txt

Dilution:

1.0

Initial Weight/Volume:

177,84 g

Date Analyzed: Date Prepared:

09/20/2010 2156

Final Weight/Volume:

Analyte

Silt

Clay

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand

 Q_0 (15.9_ 0.0 1.6 14.3 73.5 7 10.6

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

LEGEX SD 10-37.2-0-12

Lab Sample ID:

200-1593-12

Client Matrix:

Solid

Date Sampled: 09/15/2010 1735 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

200-1593-C-12.bt

Dilution:

Lab File ID:

Initial Weight/Volume:

233.27 g

Date Analyzed:

1.0 09/20/2010 2219

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Qualifier

NONE

NONE

Result (%) Analyte Gravel 0.02 Sand Coarse Sand 0.0 Medium Sand 0.7 Fine Sand 22.2 70.8 Silt

Clay

77.1 6.3

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

LGGEO SD10-37.3R-0-6

Lab Sample ID:

200-1593-13

Client Matrix:

Solid

Date Sampled: 09/16/2010 0850

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

200-1593-G-13.txt

N/A

Lab File ID:

Dilution:

Initial Weight/Volume:

215.87 g

Date Analyzed:

1.0

09/20/2010 2222

Final Weight/Volume:

Date Prepared:

Analyte Gravel

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Sand Coarse Sand Medium Sand Fine Sand Silt

Clay

(200) 38.4 0.4 2,5 35.5 52.7

8.3

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

LGAET SD10-37,42-0-4

Lab Sample ID:

200-1593-14

09/20/2010 2226

Client Matrix:

Solid

Date Sampled: 09/16/2010 0930 Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-14.txt

Dilution:

Final Weight/Volume:

Analyte

Clay

1.0

Initial Weight/Volume:

207.32 g

Date Analyzed:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand Silt

(0.8)س2.00 0.8 2.7 26,5 60.5 8.7

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

LG/E2 SD10-37.5R-0-6 200-1593-15

Lab Sample ID:

Client Matrix:

Solid

Date Sampled: 09/16/2010 1010

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1593-C-15.txt

NONE

Dilution:

1.0

Initial Weight/Volume:

Qualifier

173.46 g

Date Analyzed:

09/20/2010 2229

Final Weight/Volume:

NONE

Date Prepared:

Analyte	DryWt Corrected: N	Result (%)
Gravel	AAA	Q.D
Sand		(15,7)
Coarse Sand		0.2
Medium Sand		0.7
Fine Sand		14.8
Silt '		71.5

Clay

11.5 7 84.2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1593-1

Sdg Number: A0I160575

Client Sample ID:

SD10-DUPY SD10-37.6-0-3

Lab Sample ID:

200-1593-16

Client Matrix: Solid

Date Sampled: 09/16/2010 1100

Date Received: 09/18/2010 0945

D422 Grain Size

Method:

D422

Analysis Batch: 200-6898

Instrument ID:

D422 import

Preparation:

N/A

Lab File ID:

200-1593-C-16.txt

Dilution:

1.0

Initial Weight/Volume:

207.81 g

Date Analyzed:

09/20/2010 2233

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Gravel Sand Coarse Sand Medium Sand Fine Sand Silt Clay

42.4 48.8 4.5

46.5

0.7

3.4

Client Sample ID: SD10-36.1C-0-3

General Chemistry

Lot-Sample #...: A0J120402-001

Work Order #...: L798X

Matrix....: SO

Date Sampled...: 09/15/10 11:35 Date Received..: 09/16/10

% Moisture....: 27

PARAMETER Percent Solids	RESULT 72.5	RL 10.0	UNITS %	METHOD MCAWW 160.3 MOD	PREPARATION- ANALYSIS DATE 10/15-10/18/10	PREP BATCH # 0288148
Total Organic	3200	ution Facto 1400	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: SD10-37.6C-0-2

General Chemistry

Lot-Sample #...: A0J120402-002

Work Order #...: L7980

Matrix..... SO

Date Sampled...: 09/16/10 10:50 Date Received..: 09/16/10

% Moisture....: 29

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	71.1	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/15-10/18/10	0288148
Total Organic Carbon	1600	1400 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

North Canton 21

RL Reporting Limit

Client Sample ID: FPS10-002-01

GC Semivolatiles

Lot-Sample #: A0I220591-001 Date Sampled: 09/20/10 11:20 Prep Date: 09/30/10 Prep Batch #: 0273035	**	09/22/10	Ma trix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.04 g	Final Wgt/Vol: 10 mL
% Moisture: 27	Method:	SW846 8081E	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	560	45	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	96 DIL	(31 - 131)	
Decachlorobiphenyl	106 DIL	(18 - 145)	
NOTE(S):			

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-003

GC Semivolatiles

Lot-Sample #: A0I220591-00 Date Sampled: 09/20/10 13: Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 26	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 450	REPORTING LIMIT 45	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	93 DIL	(31 - 131)	
Decachlorobiphenyl	78 DIL	(18 - 145)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

North Canton

36

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: FPS10-001

GC Semivolatiles

Lot-Sample #: A0I220591-007 Date Sampled: 09/20/10 16:09 Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix: SO
Dilution Factor: 1	Initial Wgt/Vol:	30.01 g	Final Wgt/Vol: 10 mL
% Moisture: 43	Method:	SW846 8081	В
D. P. A. M. LIGHT D	DDGW M	REPORTING	IDITAL
PARAMETER	RESULT	<u>LIMIT</u>	UNITS
Mirex	14	5.8	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	·
Tetrachloro-m-xylene	70	(31 - 131)	
Decachlorobiphenyl	65	(18 - 145)	
MOVER (C).			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-DUP-H-01

GC Semivolatiles

Lot-Sample #: A01220591-008 Date Sampled: 09/20/10 16:09 Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix: SO
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	-	Final Wgt/Vol: 10 mL
% Moisture: 45	Method:	SW846 8081E	
PARAMETER Mirex	RESULT 8.6		UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	60	(31 - 131)	
Decachlorobiphenyl	53 .	(18 - 145)	
NOTE(S):			<u> </u>

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-004

GC Semivolatiles

Lot-Sample #: A0I220591-01 Date Sampled: 09/21/10 09: Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix:	so
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.04 g	Final Wgt/Vol:	10 mL
% Moisture: 42	Method:	SW846 8081B		
PARAMETER Mirex	RESULT 510		iits j/kg	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	81 DIL	(31 - 131)		
Decachlorobiphenyl	44 DIL	(18 - 145)		
NOTE (C).				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-005

GC Semivolatiles

Lot-Sample #: A0I220591-015 Date Sampled: 09/21/10 11:2 Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.06 g	Final Wgt/Vol: 10 mL
% Moisture: 54	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	170	72	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	83 DIL	(31 - 131)	
Decachlorobiphenyl	75 DIL	(18 - 145)	
NOTE(S):			

 $[\]label{eq:def:DIL} \textbf{ The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: FPS10-006

GC Semivolatiles

Lot-Sample #: A0I220591-018 Date Sampled: 09/21/10 13:10 Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix ; SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.08 g	Final Wgt/Vol: 10 mL
% Moisture: 25	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 300	REPORTING LIMIT 44	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	87 DIL	(31 - 131)	
Decachlorobiphenyl	88 DIL	(18 - 145)	
NOTE(S):	·		

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-007

GC Semivolatiles

Lot-Sample #: A0I220591-021 Date Sampled: 09/21/10 14:50 Prep Date: 09/30/10 Prep Batch #: 0273035	==	09/22/10	Matrix : SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30 g	Final Wgt/Vol: 10 mL
% Moisture: 17	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 600	REPORTING LIMIT 40	UNITS ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	93 DIL	(31 - 131)	
Decachlorobiphenyl	77 DIL	(18 - 145)	
becachiotoptpheny1	// 1/11	(10 - 145)	
NOTE(S):	· · · · · · · · · · · · · · · · · · ·		

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: FPS10-008-01

GC Semivolatiles

Lot-Sample #: A01220591-022 Date Sampled: 09/21/10 16:20 Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 22	Method:	SW846 8081E	3
PARAMETER Mirex	RESULT 90	REPORTING LIMIT 43	UNITS ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	89 DIL	(31 - 131)	
Decachlorobiphenyl	84 DIL	(18 - 145)	
NOTES (C)			

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-008-02

GC Semivolatiles

Lot-Sample #: A0I220591-023 Date Sampled: 09/21/10 17:29 Prep Date: 09/30/10 Prep Batch #: 0273035		09/22/10	Matrix SO
Dilution Factor: 1	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 26	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 9.6 PCJ	REPORTING LIMIT 4.5	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	84	(31 - 131)	
Decachlorobiphenyl	78	(18 - 145)	

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

PG The percent difference between the original and confirmation analyses is greater than 40%.

Client Sample ID: FPS10-002-01

General Chemistry

Lot-Sample #...: A0I220591-001

Work Order #...: L7CJA

Matrix..... SO

Date Sampled...: 09/20/10 11:20 Date Received..: 09/22/10
% Moisture....: 27

					PREPARATION-	PREP
PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Solids	72.9	10.0	음	MCAWW 160.3 MOD	10/01-10/04/10	0274278

Dilution Factor: 1

Total Organic Carbon 14000

1400 mg/kg

MSA WALKLEY-BLACK 10/06/10

0279303

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-003

General Chemistry

Lot-Sample #...: A0I220591-004 Work Order #...: L7CJJ Matrix.....: S0

Date Sampled...: 09/20/10 13:55 Date Received..: 09/22/10

% Moisture....: 26

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	74.0	10.0 ution Facto	ቴ or: l	MCAWW 160.3 MOD	10/01-10/04/10	0274278
Total Organic Carbon	16000	1400 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):
RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-001

General Chemistry

Lot-Sample #...: A0I220591-007 Work Order #...: L7CJN Matrix.....: S0
Date Sampled...: 09/20/10 16:05 Date Received..: 09/22/10

% Moisture....: 43

PREPARATION-PREP PARAMETER RESULT <u>RL</u>___ UNITS METHOD ANALYSIS DATE BATCH # Percent Solids 57.4 10.0 MCAWW 160.3 MOD 10/01-10/04/10 0274278 Dilution Factor: 1 16000J Total Organic 1700 MSA WALKLEY-BLACK 10/06/10 mg/kg 0279303 Carbon Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-DUP-H-01

General Chemistry

Lot-Sample #...: A0I220591-008 Work Order #...: L7CJQ Matrix....: SO

Date Sampled...: 09/20/10 16:05 Date Received..: 09/22/10

% Moisture....: 45

PREPARATION-PREP PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH # Percent Solids 55.0 10.0 MCAWW 160.3 MOD 10/01-10/04/10 0274278 Dilution Factor: 1 12000 J Total Organic 1800 MSA WALKLEY-BLACK 10/06/10 mg/kg 0279303 Carbon

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-004

General Chemistry

Lot-Sample #...: A0I220591-012 Work Order #...: L7CKD Matrix......: S0

Date Sampled...: 09/21/10 09:50 Date Received..: 09/22/10

% Moisture....: 42

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	58.1	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/01-10/04/10	0274278
Total Organic Carbon	22000	1700	mg/kg	MSA WALKI.EY-BI.ACK	10/06/10	0279303

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-005

General Chemistry

Lot-Sample #...: A0I220591-015 Work Order #...: L7CKM Matrix.....: S0

Date Sampled...: 09/21/10 11:20 Date Received..: 09/22/10

% Moisture....: 54

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	45.8 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/01-10/04/10	0274278
Total Organic Carbon	13000	2200 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-006

General Chemistry

Lot-Sample #...: A0I220591-018 Work Order #...: L7CK1 Matrix.....: SO

Date Sampled...: 09/21/10 13:10 Date Received..: 09/22/10

% Moisture....: 25

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	75.3	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/01-10/04/10	0274279
Total Organic Carbon	13000	1300 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-007

General Chemistry

Lot-Sample #...: A0I220591-021 Work Order #...: L7CK9 Matrix.....: S0

Date Sampled...: 09/21/10 14:50 Date Received..: 09/22/10

% Moisture....: 17

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	83.3	10.0 ution Fact	ቼ or: 1	MCAWW 160.3 MOD	10/01-10/04/10	0274279
Total Organic Carbon	8000	1200 ution Fact	mg/kg	MSA WALKLRY-BLACK	10/06/10	0279303

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: FPS10-008-01

General Chemistry

Lot-Sample #...: A0I220591-022 Work Order #...: L7CLF Matrix...... S0

Date Sampled...: 09/21/10 16:20 Date Received..: 09/22/10

% Moisture....: 22

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	77.6	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/01-10/04/10	0274279
Total Organic Carbon	11000	1300	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303
	Dil	ution Fact	or: 1			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-008-02

General Chemistry

Lot-Sample #...: A0I220591-023 Work Ore

Work Order #...: L7CLG

Matrix..... SO

Date Sampled...: 09/21/10 17:25 Date Received..: 09/22/10

% Moisture....: 26

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH_#
Percent Solids	74.2	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/01-10/04/10	0274279
Total Organic Carbon	16000	1300	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

Dilution Factor:

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FP\$10-002-01

Lab Sample ID:

200-1700-1

Client Matrix:

Solid

Date Sampled: 09/20/2010 1120

Date Received: 09/24/2010 1005

D422 Grain Size

Method:

D422 N/A

Analysis Batch: 200-7281

Instrument ID:

D422_import 200-1700-B-1.txt

NONE

Preparation:

Lab File ID: Initial Weight/Volume:

Qualifier

147.21 g

Dilution: Date Analyzed: 1.0

09/28/2010 1626

Final Weight/Volume:

NONE

Date Prepared:

DryWt Corrected: N Analyte Result (%) Gravel 1.1 Sand 40,6 Coarse Sand 1.9 Medium Sand 5,9 Fine Sand 32.8

Clay

58.3 46.1 12.2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FPS10-003

Lab Sample ID:

200-1700-2

Client Matrix:

Solid

Date Sampled: 09/20/2010 1355

Date Received: 09/24/2010 1005

D422 Grain Size

Method:

D422

Analysis Batch: 200-7281

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

Qualifier

200-1700-B-2.txt

NONE

Dilution: Date Analyzed: 1.0

09/28/2010 1630

Initial Weight/Volume: Final Weight/Volume:

NONE

140.88 g

Date Prepared:

 Analyte
 DryWl Corrected: N
 Result (%)

 Gravel
 0.9

 Sand
 51.2

 Coarse Sand
 4.7

 Medium Sand
 15.1

 Fine Sand
 31.4

 Silt
 37.8

Clay

37.8 10.1 47 9

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A01220591

Client Sample ID:

FPS10-001

Lab Sample ID:

200-1700-3

Client Matrix:

Solid

Date Sampled: 09/20/2010 1605

Date Received: 09/24/2010 1005

D422 Grain Size

Method: Preparation: D422 N/A

Analysis Batch; 200-7281

Instrument ID:

D422_import

NONE

Dilution:

Lab File ID:

Qualifier

200-1700-B-3.txt

Date Analyzed:

1.0

09/28/2010 1635

Initial Weight/Volume: Final Weight/Volume:

NONE

143.37 g

Date Prepared:

DryWt Corrected: N Analyte Gravel Sand

Coarse Sand Medium Sand Fine Sand

Silt

Clay

7.6 30.7 51.9

Result (%)

0.0

39.0

0.7

61.0

473

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FPS10-004

Lab Sample ID:

200-1700-4

Client Matrix:

Solid

Date Sampled: 09/21/2010 0950

Date Received: 09/24/2010 1005

D422 Grain Size

Method: Preparation:

D422 N/A

Analysis Batch: 200-7281

Instrument ID:

D422_import

Dilution:

Lab File ID:

200-1700-B-4.txt

Date Analyzed:

1.0

09/28/2010 1637

Initial Weight/Volume:

122,3 g

Date Prepared:

Final Weight/Volume:

DryWt Corrected: N Qualifier NONE NONE Result (%) Analyte Gravel 0.0 Sand 42.2 Coarse Sand 0.5 Medium Sand 3,0 38.7 Fine Sand Silt 44.0 Clay 13.8

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FPS10-005

Lab Sample ID:

200-1700-5

Client Matrix:

Solid

Date Sampled: 09/21/2010 1120

Date Received: 09/24/2010 1005

D422 Grain Size

Method: Preparation: D422 N/A

Analysis Batch: 200-7281

Instrument ID:

D422_import

NONE

Lab File ID:

Qualifier

200-1700-B-5.txt

Dilution: Date Analyzed: 1,0

09/28/2010 1639

Initial Weight/Volume: Final Weight/Volume:

NONE

125,68 g

Date Prepared:

DryWt Corrected: N Result (%) Analyte Gravel 0.0 Sand 35.3 Coarse Sand 2.1 Medium Sand 4.5

Fine Sand Silt

Clay

28.7 r.hu 45.5

19.2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FP\$10-006

Lab Sample ID:

200-1700-6

Client Matrix:

Solid

Date Sampled: 09/21/2010 1310

Date Received: 09/24/2010 1005

D422 Grain Size

Method: Preparation: D422 N/A

Analysis Batch: 200-7281

Instrument ID:

D422_import

Lab File ID:

200-1700-B-6.bdt

Dilution: Date Analyzed:

1.0 09/28/2010 1642 Initial Weight/Volume:

161.1 g

Date Prepared:

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		6.8			annon i and a second bosses of the control of the c
Sand		52.4			
Coarse Sand		1,2			
Medium Sand		7.3			
Fine Sand		43.9			
Silt		33.1 _{JO} , B			
Clay		7.7			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FPS10-007

Lab Sample ID:

200-1700-7

Client Matrix:

Solid

Date Sampled: 09/21/2010 1450 Date Received: 09/24/2010 1005

D422 Grain Size

Method: Preparation: D422 N/A Analysis Batch: 200-7281

Instrument ID: Lab File ID: D422_import 200-1700-D-7.txt

NONE

Dilution:

1.0

09/28/2010 1645

Initial Weight/Volume: Final Weight/Volume:

173.07 g

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE
Gravel		1.1		
Sand		72,3		
Coarse Sand		2.4		
Medium Sand		10.6		
Fine Sand		59.3		
Silt		کریا ^{20.9}	Q	
Clay		5.7		

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0l220591

Client Sample ID:

FPS10-008-01

Lab Sample ID:

200-1700-8

Client Matrix:

Solid

Date Sampled: 09/21/2010 1620

Date Received: 09/24/2010 1005

D422 Grain Size

4.15

Method: Preparation: D422 N/A Analysis Batch: 200-7281

Instrument ID: Lab File ID:

Qualifier

D422_import 200-1700-B-8.txt

NONE

Dilution: Date Analyzed: 1.0

09/28/2010 1650

Initial Weight/Volume: Final Weight/Volume:

NONE

163.78 g

Date Prepared:

Analyte DryWt Corrected: N Result (%) 0.9 Gravel Sand 57.3 Coarse Sand 0.7 Medium Sand 9.1 Fine Sand 47.5 Silt 34.0 Clay 7.8

 \int

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1700-1

Sdg Number: A0I220591

Client Sample ID:

FPS10-008-02

Lab Sample ID:

200-1700-9

Client Matrix:

Solid

Date Sampled: 09/21/2010 1725

Date Received: 09/24/2010 1005

D422 Grain Size

Method:

D422

Analysis Batch: 200-7281

Instrument ID:

D422_import

Preparation:

N/A

313 Daton, 200-720 1

Lab File ID:

200-1700-B-9.txt

Dilution: Date Analyzed: 1.0

09/28/2010 1808

Initial Weight/Volume:

159.03 g

Date Prepared:

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		3.0			American against an ann an ann an ann an ann an ann an a
Sand		40.8			
Coarse Sand		1.6			
Medium Sand		5.8			
Fine Sand		33.4	^		
Silt		45.9	.'V		
Clav		10.3			

Client Sample ID: FPS10-010

GC Semivolatiles

Lot-Sample #: A0I240563-003 Date Sampled: 09/22/10 12:3 Prep Date: 09/30/10 Prep Batch #: 0273035		09/24/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.05 g	Final Wgt/Vol: 10 mL
% Moisture: 23	Method:	SW846 8081B	
PARAMETER Mirex	RESULT 170		NITS g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	92 DIL	(31 - 131)	
${ t Decachlorobiphenyl}$	78 DIL	(18 - 145)	
NAME (C)			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: FPS10-011

GC Semivolatiles

Lot-Sample #: A0I240563-006 Date Sampled: 09/22/10 15:3 Prep Date: 09/30/10 Prep Batch #: 0273035		09/24/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.09 g	Final Wgt/Vol: 10 mL
% Moisture: 27	Method:	SW846 8081B	_
PARAMETER Mirex	RESULT		NITS g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	92 DIL	(31 - 131)	
Decachlorobiphenyl	65 DIL	(18 - 145)	
NORD (G)			

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-DUP-H-02

GC Semivolatiles

Lot-Sample #: A0I Date Sampled: 09/ Prep Date: 09/ Prep Batch #: 027	22/10 15:35 Date 30/10 Anal		09/24/10	Matrix		so
Dilution Factor: 10	Init	ial Wgt/Vol: :	30.16 g	Final	Wgt/Vol:	10 mL
% Moisture: 26		od	-			
PARAMETER Mirex	RESU. 280 C	LT	REPORTING LIMIT 44	UNITS ug/kg		
	PERC:	ENT)	RECOVERY			
SURROGATE	RECO	VERY_	LIMITS			
Tetrachloro-m-xylene	86 D	IL -	(31 - 131)			
Decachlorobiphenyl	67 D	IT	(18 - 145)			

 $\label{eq:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: FPS10-012

GC Semivolatiles

Lot-Sample #: A0I240563-010 Date Sampled: 09/23/10 12:2 Prep Date: 09/30/10 Prep Batch #: 0273035		09/24/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.01 g	Final Wgt/Vol: 10 mL
% Moisture: 24	Method:	SW846 8081B	
PARAMETER Mirex	RESULT 1100		NITS g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	95 DIL	(31 - 131)	
Decachlorobiphenyl	91 DIL	(18 - 145)	
NOWE (G)			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-010

General Chemistry

Lot-Sample #...: A0I240563-003

Work Order #...: L7GP5

Matrix..... SO

Date Sampled...: 09/22/10 12:35 Date Received..: 09/24/10

% Moisture....: 23

PREPARATION-PREP ANALYSIS DATE BATCH # PARAMETER RESULT RLUNITS METHOD 10.0 10/04-10/05/10 0277206 Percent Solids 왐 MCAWW 160.3 MOD 76.7

Dilution Factor: 1

Total Organic

17000

1300 mg/kg MSA WALKLEY-BLACK 10/06/10

0279303

Carbon

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-011

General Chemistry

Lot-Sample #...: A0I240563-006

Work Order #...: L7GQ3

Matrix..... SO

Date Sampled...: 09/22/10 15:35 Date Received..: 09/24/10 % Moisture....: 27

PREPARATION-PREP RESULT PARAMETER RL UNITS METHOD ANALYSIS DATE BATCH # MCAWW 160.3 MOD Percent Solids 73.2 10.0 왐 10/04-10/05/10 0277206 Dilution Factor: 1 Total Organic 17000 1400 MSA WALKLEY-BLACK 10/06/10 mg/kg 0279303 Carbon

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-DUP-H-02

General Chemistry

Lot-Sample #...: A01240563-007

Work Order #...: L7GQ8

Matrix..... so

Date Sampled...: 09/22/10 15:35 Date Received..: 09/24/10

% Moisture....: 26

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	74.4 Dil	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/04-10/05/10	0277206
Total Organic Carbon	13000	1300	mg/kg	MSA WALKLEY-BLACK	10/06/10	0279303

NOTE(S):

RL. Reporting Limit

Client Sample ID: FPS10-012

General Chemistry

Lot-Sample #...: A01240563-010 Work Order #...: L7GRN Matrix.....: S0

Date Sampled...: 09/23/10 12:20 Date Received..: 09/24/10

% Moisture....: 24

PREPARATION-PREP RLPARAMETER RESULT UNITS METHOD ANALYSIS DATE BATCH # Percent Solids 75.8 10.0 MCAWW 160.3 MOD 10/04-10/05/10 0277206 Dilution Factor: 1 Total Organic 14000 1300 MSA WALKLEY-BLACK 10/06/10 mg/kg 0279303 Carbon Dilution Factor: 1

NOTE(S):

RL Reporting Limit

SAMPLE SUMMARY

A01240563

D SAMP TIME
10 12:35
10 15:35
10 15:35
10 12:20
10 15:3 10 15:3

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results,
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, lemperature, viscosity, and weight.

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1715-1

Sdg Number: A0I240563

Client Sample ID:

L7GRN

FPS10-012

Lab Sample ID:

200-1715-3

Client Matrix: Solid

Date Sampled: 09/23/2010 1220 Date Received: 09/25/2010 0930

D422 Grain Size

49.2

Method:

D422

Analysis Batch: 200-7139

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1715-B-3.txt

Dilution:

Initial Weight/Volume:

107.64 g

Date Analyzed:

1.0

09/27/2010 1235

Final Weight/Volume:

Date Prepared:

Analyte

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel 0.1 Sand 50.7 Coarse Sand 12.0 Medium Sand 3.7 Fine Sand 35.0 Silt 39,0 10.2 Clay

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1715-1

Sdg Number: A0I240563

Client Sample ID:

L7945 FPS10-010

Lab Sample ID:

200-1715-1

Client Matrix:

Solid

D422 Grain Size

Date Sampled: 09/22/2010 1235

Date Received: 09/25/2010 0930

Method:

D422

Analysis Batch: 200-7139

Instrument ID:

D422_import

Preparation:

Lab File ID:

200-1715-B-1.txt

N/A

Initial Weight/Volume:

117.78 g

Dilution:

Clay

1.0

Final Weight/Volume:

Date Analyzed: Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Gravel (O,D) Sand 67.2 12.4 Coarse Sand 10.0 Medium Sand Fine Sand 44.8 28.1 732.8 Silt

09/27/2010 1150

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1715-1

Sdg Number: A0I240563

Client Sample ID:

L7963 FPS 10-011

Lab Sample ID:

200-1715-2

Client Matrix:

Solid

Date Sampled: 09/22/2010 1535

Date Received: 09/25/2010 0930

D422 Grain Size

Method:

D422

Analysis Batch: 200-7139

Instrument ID:

D422_import

Preparation:

Lab File ID:

200-1715-B-2.txt

Dilution:

N/A 1.0

Initial Weight/Volume:

100.72 g

Date Analyzed:

09/27/2010 1230

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Gravel Sand

Coarse Sand Medium Sand Fine Sand Silt Clay

94 61.3 13.2 5,5 42.6

31.6

38.3

Client Sample ID: FPS10-DUP4

GC Semivolatiles

Lot-Sample #: A	\NT300420_002	Work Order # .	T.7 DNTY 1 7\T1	Matrix SO
-				Mactia BO
Date Sampled: 0				
Prep Date: 1	10/09/10	Analysis Date:	10/12/10	
Prep Batch #: 0	282010			
Dilution Factor: 1	LO	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 2	27	Method:	SW846 8081	В
		•	REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Mirex		1100 J	45	ug/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xyle	ene	3560 DIL,*	(31 - 131)	•
Decachlorobiphenyl	L	114 DIL	(18 - 145)	
(-)				

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-013

GC Semivolatiles

Lot-Sample #: A0I300420-004	Work Order #:	L7PN31AE	Matrix : SO
Date Sampled: 09/28/10 09:5	5 Date Received:	09/30/10	
Prep Date: 10/09/10	Analysis Date:	10/12/10	
Prep Batch #: 0282010			
Dilution Factor: 10	Initial Wgt/Vol:	30.04 g	Final Wgt/Vol: 10 mL
% Moisture: 37	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	690 J	53	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	1890 DIL,*	(31 - 131)	
Decachlorobiphenyl	66 DIL	(18 - 145)	
NOTE (S):			

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-014

GC Semivolatiles

Lot-Sample #: A0I300420-007	Work Order #:	L7PPM1AE	Matrix \$0
Date Sampled: 09/28/10 11:15	Date Received:	09/30/10	
Prep Date: 10/09/10	Analysis Date:	10/12/10	
Prep Batch #: 0282010			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.01 g	Final Wgt/Vol: 10 mL
% Moisture: 32	Method:	SW846 8081B	ı
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	750	49	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	72 DIL	(31 - 131)	
Decachlorobiphenyl	101 DIL	(18 - 145)	
NOTE(S):			

 $\label{eq:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-015

GC Semivolatiles

Lot-Sample #: A0I300420-010 Date Sampled: 09/28/10 12:4 Prep Date: 10/09/10 Prep Batch #: 0282010	**	09/30/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 42	Method:	SW846 8081B	
PARAMETER Mirex	RESULT		UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	2290 DIL,*	(31 - 131)	
Decachlorobiphenyl	94 DIL	(18 - 145)	

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

 $[\]label{eq:def:DIL} \textbf{DIL.} \textbf{ The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-016

GC Semivolatiles

Lot-Sample #: A0I300420-013 Date Sampled: 09/28/10 14:55 Prep Date: 10/09/10 Prep Batch #: 0282010		09/30/10	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.09 g	Final Wgt/Vol: 10 mL
% Moisture: 35	Method:	SW846 8081B	
PARAMETER Mirex	RESULT 880 J		UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	1470 DIL,*	(31 - 131)	
Decachlorobiphenyl	105 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes. * Surrogate recovery is outside stated control limits.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-017

GC Semivolatiles

Lot-Sample #: A0I300420-01 Date Sampled: 09/28/10 16: Prep Date: 10/09/10 Prep Batch #: 0282010		09/30/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.08 g	Final Wgt/Vol: 10 mL
% Moisture: 30	Method:	SW846 8081	В
PARAMETER Mirex	- RESULT	REPORTING LIMIT 47	UNITS ug/kg
	PERCENT	REÇOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	925 DIL,*	(31 - 131)	
Decachlorobiphenyl	122 DIL	(18 - 145)	
NOTE: (C)			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-018

GC Semivolatiles

Lot-Sample #: A0I300420-019 Date Sampled: 09/29/10 10:3 Prep Date: 10/09/10 Prep Batch #: 0282010	**	09/30/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.01 q	Final Wqt/Vol: 10 mL
% Moisture: 22	Method:	_	→ •
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	170	42	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	126 DIL	(31 - 131)	
Decachlorobipheny1	136 DIL	(18 - 145)	
MOTE(C).			•

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-DUP5

GC Semivolatiles

Lot-Sample #: A0I300420-020	Work Order #:	L7PQM1AD	Matrix SO
Date Sampled: 09/29/10 10:35	Date Received:	09/30/10	
Prep Date: 10/09/10	Analysis Date	10/12/10	
Prep Batch #: 0282010			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 22	Method:	SW846 8081	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	230 J	43	ug/kg
•	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	167 DIL,*	(31 - 131)	•
Decachlorobiphenyl	101 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-019

GC Semivolatiles

Lot-Sample #: A0I300420-023 Date Sampled: 09/29/10 12:20			Matrix : SO
Prep Date: 10/09/10	Analysis Date:		
-	Analysis Date:	10/12/10	
Prep Batch #: 0282010			
Dilution Factor: 10	Initial Wgt/Vol:	~	Final Wgt/Vol: 10 mL
% Moisture: 21	Method:	SW846 8081E	3
PARAMETER	RESULT		<u>UNITS</u>
Mirex	680	42	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	107 DIL	(31 - 131)	
Decachlorobiphenyl	81 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: FPS10-020

GC Semivolatiles

Lot-Sample #: A0I300420-026	Work Order #:	L7PRK1AE	Matrix SO
Date Sampled: 09/29/10 13:45	Date Received:	09/30/10	
Prep Date: 10/09/10	Analysis Date:	10/12/10	
Prep Batch #: 0282010			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 25	Method:	SW846 8081	В
	•	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	1300	44	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	52 DIL	(31 - 131)	
Decachlorobiphenyl	124 DIL	(18 - 145)	
NIOTE (C).			

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: FPS10-021

GC Semivolatiles

Lot-Sample #: A Date Sampled: 0 Prep Date: 1 Prep Batch #: 0	09/29/10 15:00 10/09/10		09/30/10	Matrix: SO
Dilution Factor: 1 % Moisture: 2	10	<pre>Initial Wgt/Vol: Method:</pre>	_	Final Wgt/Vol: 10 mL
PARAMETER Mirex		RESULT 880	REPORTING LIMIT 44	UNITS ug/kg
SURROGATE Tetrachloro-m-xyle	ene	PERCENT RECOVERY 115 DIL	RECOVERY LIMITS (31 - 131)	5 . 2
Decachlorobiphenyl	1	109 DIL	(18 - 145)	

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-022

GC Semivolatiles

Lot-Sample #: A0I300420-032 Date Sampled: 09/29/10 17:29 Prep Date: 10/09/10 Prep Batch #: 0282010		09/30/10	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.01 g	Final Wgt/Vol: 10 mL
% Moisture: 19	Method:	SW846 8081	В
PARAMETER Mirex	RESULT	REPORTING LIMIT 41	UNITS uq/kq
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	115 DIL	(31 - 131)	
Decachlorobiphenyl	83 DIP	(18 - 145)	

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-DUP4

General Chemistry

Lot-Sample #...: A0I300420-002

Work Order #...: L7PNX

Matrix....: SO

Date Sampled...: 09/28/10 09:12 Date Received..: 09/30/10

% Moisture....: 27

PARAMETER Percent Solids	RESULT 72.7	RL 10.0 lution Fact	UNITS	METHOD MCAWW 160.3 MOD	PREPARATION- ANALYSIS DATE 10/07-10/08/10	PREP BATCH # 0280165
Total Organic Carbon	8700	1400	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: FPS10-013

General Chemistry

Lot-Sample #...: A0I300420-004

Work Order #...: L7PN3

Matrix..... SO

Date Sampled...: 09/28/10 09:55 Date Received..: 09/30/10
% Moisture....: 37

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	62.6	10.0 ition Facto	왕 or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	8100	1600	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
·	Dil	ution Facto	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-014

General Chemistry

Lot-Sample #...: A01300420-007

Work Order #...: L7PPM Date Sampled...: 09/28/10 11:15 Date Received..: 09/30/10

Matrix....: SO

% Moisture....: 32

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	67.9	10.0	*	MCAWW 160.3 MOD	10/07-10/08/10	0280165
	DII	reion ruce	,1. 1			
Total Organic Carbon	2800	1500	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
	Dilu	ıtion Facto	or: 1			

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-015

General Chemistry

Lot-Sample #...: A0I300420-010 Wor

Work Order #...: L7PPV

Matrix..... SO

Date Sampled...: 09/28/10 12:45 Date Received..: 09/30/10 % Moisture....: 42

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	58.1	10.0 tion Facto	% or; 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	4600	1700	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-016

General Chemistry

Lot-Sample #...: A0I300420-013 Work Order #...: L7PP3

Matrix..... SO

Date Sampled...: 09/28/10 14:55 Date Received..: 09/30/10

% Moisture....: 35

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	65.4	10.0 ution Facto	ቄ or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	4800	1500 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-017

General Chemistry

Lot-Sample #...: A0I300420-016 Work Order #...: L7PQA Matrix

Matrix....: SO

Date Sampled...: 09/28/10 16:05 Date Received..: 09/30/10

% Moisture....: 30

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	69.9 Dilu	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	4300	1400	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-018

General Chemistry

Lot-Sample #...: A0I300420-019 Work Order

Work Order #...: L7PQL Matrix.....: SO

Date Sampled...: 09/29/10 10:35 Date Received..: 09/30/10

% Moisture....: 22

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	78.2 Dil	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	3500	1300	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
	Dil	ution Facto	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-DUP5

General Chemistry

Matrix..... SO

Lot-Sample #...: A0I300420-020 Work Order #...: L7PQM

Date Sampled...: 09/29/10 10:35 Date Received..: 09/30/10

% Moisture....: 22

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	77.6	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	4700	1300	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
	Dilı	ution Facto	or: 1	,		

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-019

General Chemistry

Lot-Sample #...: A0I300420-023

Work Order #...: L7PQ1 Date Sampled...: 09/29/10 12:20 Date Received..: 09/30/10

Matrix..... SO

% Moisture....: 21

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	79.1	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	5000	1300	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-020

General Chemistry

Matrix..... SO

Lot-Sample #...: A0I300420-026 Work Order #...: L7PRK

Date Sampled...: 09/29/10 13:45 Date Received..: 09/30/10

% Moisture....: 25

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	75.4	10.0 stion Facto	% or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	4600	1300	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-021

General Chemistry

Lot-Sample #...: A0I300420-029

Work Order #...: L7PRR

Matrix..... SO

Date Sampled...: 09/29/10 15:00 Date Received..: 09/30/10

% Moisture....: 25

PARAMETER	RESULT	RĹ	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	74.6	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	4900	1300 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-022

General Chemistry

Lot-Sample #...: A0I300420-032

Work Order #...: L7PRW

Matrix..... SO

Date Sampled...: 09/29/10 17:25 Date Received..: 09/30/10

% Moisture....: 19

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	81.2	10.0 ution Facto	% or: l	MCAWW 160.3 MOD	10/07-10/08/10	0280165
Total Organic Carbon	3900	1200	mg/kg	MSA WALKLRY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-013

Lab Sample ID:

200-1790-1

Client Matrix:

Solid

Date Sampled: 09/28/2010 0955

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-1.txt

Dilution:

Initial Weight/Volume:

136.25 g

Date Analyzed:

1.0

10/01/2010 2020

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Fine Sand Gravel Coarse Sand Medium Sand Sand Fines

24.7 0.5 0.4 2.1

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-014

Lab Sample ID:

200-1790-2

10/01/2010 2023

DryWt Corrected: N

Client Matrix:

Solid

Date Sampled: 09/28/2010 1115

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-2,txt

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

146.48 g

Date Analyzed:

Date Prepared:

Result (%)

30.4

Qualifier

NONE

NONE

Analyte Fine Sand Gravet Coarse Sand Medium Sand Sand Fines

(0.4) 0.1 33.1 66.5

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-016

Lab Sample ID:

200-1790-3

Client Matrix:

Solid

Date Sampled: 09/28/2010 1455 Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-3,txt

Dilution:

Initial Weight/Volume:

149.26 g

Date Analyzed:

1.0

10/01/2010 2026

Final Weight/Volume:

Date Prepared:

Analyte

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Fine Sand Gravel Coarse Sand Medium Sand Sand **Fines**

27.6 (0.0)

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-017

Lab Sample ID:

200-1790-4

Client Matrix:

Solid

Date Sampled: 09/28/2010 1605

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-4.txt

Dilution:

Initial Weight/Volume:

136.84 g

Date Analyzed:

1.0

10/01/2010 2029

Final Weight/Volume:

Date Prepared:

Analyte

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Fine Sand Gravel Coarse Sand Medium Sand Sand Fines

(aa) 0.2 <u>3.4</u> 41,8

38.2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-018

Lab Sample ID:

200-1790-5

10/01/2010 2032

Client Matrix:

Solid

Date Sampled: 09/29/2010 1035

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-5,txt

Dilution:

Initial Weight/Volume:

151.52 g

Date Analyzed:

1.0

Final Weight/Volume:

Date Prepared:

Analyte

DryWt Corrected; N

Result (%)

Qualifier

NONE

NONE

Fine Sand Gravel Coarse Sand Medium Sand Sand Fines

44.7 (0.8) 0.7 7.8 53.2

46.0

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-019

Lab Sample ID:

200-1790-6

10/01/2010 2035

Client Matrix:

Solid

Date Sampled: 09/29/2010 1220

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-D-6.txt

Dilution:

Initial Weight/Volume:

1.0

Final Weight/Volume:

152.03 g

Date Analyzed: Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Fine Sand Gravel Coarse Sand Medium Sand Sand Fines

33.0 (6.7)

6.4

Page 18 of 78

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-020

Lab Sample ID:

200-1790-7

Client Matrix:

Solid

Date Sampled: 09/29/2010 1345

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-7.txt

NONE

Dilution:

1.0

Initial Weight/Volume:

Qualifier

162.61 g

Date Analyzed:

10/01/2010 2050

DryWt Corrected: N

Final Weight/Volume:

NONE

Date Prepared:

Analyte
Fine Sand
Gravel
Coarse Sand
Medium Sand
Sand
Fines

Result (%) 34.1 0,0

0.0

36.1 63.9

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-021

Lab Sample ID:

200-1790-8

Client Matrix:

Solid

Date Sampled: 09/29/2010 1500

Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-8.txt

Dilution:

NONE

1.0

Initial Weight/Volume;

163.03 g

Date Analyzed:

10/01/2010 2052

Qualifier

Final Weight/Volume:

NONE

Date Prepared:

DryWt Corrected: N Result (%) Analyte Fine Sand 31.7 (0.0) Gravel Coarse Sand 0.1 Medium Sand Sand Fines

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-022

Lab Sample ID:

200-1790-9

Client Matrix:

Solid

Date Sampled: 09/29/2010 1725 Date Received: 10/01/2010 1030

D422 Grain Size

Method:

D422

Analysis Batch: 200-7433

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1790-B-9.txt

Dilution:

1.0

Initial Weight/Volume:

182.84 g

Date Analyzed:

10/01/2010 2055

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Analyte Fine Sand Gravel Coarse Sand Medium Sand Sand **Fines**

3.2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1790-1

Sdg Number: A0I300420

Client Sample ID:

FPS10-015

Lab Sample ID:

200-1806-1

Client Matrix:

Solid

Date Sampled: 09/28/2010 1245

Date Received: 10/02/2010 1100

D422 Grain Size

Method:

D422

Analysis Batch: 200-7431

Instrument ID:

D422_import

Preparation:

N/A

200-1806-B-1,txt

NONE

Lab File ID:

Qualifier

Dilution:

1.0

Initial Weight/Volume:

98.18 g

Date Analyzed:

Date Prepared:

10/04/2010 1011

Final Weight/Volume:

NONE

DryWt Corrected: N Result (%) Analyte Fine Sand 28.7 Gravel (0.0) Coarse Sand 0.4 Medium Sand Sand (30.B) **Fines**

Client Sample ID: FPS10-023

GC Semivolatiles

Lot-Sample #: A0J040425-004 Date Sampled: 09/30/10 09:5 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.12 g	Final Wgt/Vol: 10 mL
% Moisture: 41	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 130	REPORTING LIMIT 56	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	101 DIL	(31 - 131)	
Decachlorobiphenyl	112 DIL	(18 - 145)	
			·

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-024

GC Semivolatiles

Lot-Sample #: A0J040425-007 Date Sampled: 09/30/10 11:09 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30,05 g	Final Wgt/Vol: 10 mL
% Moisture: 32	Method:	SW846 8081	3
PARAMETER Mirex	RESULT	REPORTING LIMIT 48	UNITS ug/kg
Mirex	180	48	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	134 DIL,*	(31 - 131)	
Decachlorobiphenyl	101 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-027

GC Semivolatiles

Lot-Sample #: A0J040425-016 Date Sampled: 09/30/10 14:55 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix SO
Dilution Factor: 10	Initial Wqt/Vol:	30.01 q	Final Wqt/Vol: 10 mL
% Moisture: 43	Method:		
PARAMETER Mirex	RESULT		UNITSug/kg
SURROGATE Tetrachloro-m-xylene Decachlorobiphenyl	PERCENT RECOVERY 88 DIL 101 DIL	RECOVERY <u>LIMITS</u> (31 - 131) (18 - 145)	
pecucino objeticity i	101 211	(10 110)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-028

GC Semivolatiles

Lot-Sample #: A0J040425-0 Date Sampled: 09/30/10 10 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix: SO
Dilution Factor: 1	Initial Wgt/Vol:	: 30.15 g	Final Wgt/Vol: 10 mL
% Moisture: 46	Method	: SW846 8081B	<u>-</u>
PARAMETER Mirex	RESULT		NITS ng/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	78	(31 - 131)	
Decachlorobiphenyl	74	(18 - 145)	
Morro (a)			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-029

GC Semivolatiles

Lot-Sample #: A0J040425-022 Date Sampled: 10/01/10 10:20 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.09 g	Final Wgt/Vol: 10 mL
% Moisture: 19	Method:	SW846 8081	В .
PARAMETER Mirex	RESULT	REPORTING LIMIT 41	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	108 DIL	$\overline{(31 - 131)}$	
Decachlorobiphenyl	108 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-030

GC Semivolatiles

Lot-Sample #: A0J040425-025 Date Sampled: 10/01/10 11:45 Prep Date: 10/06/10 Prep Batch #: 0279070	· ·	10/02/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.08 g	Final Wgt/Vol: 10 mL
% Moisture: 27	Method:	_	- ,
PARAMETER Mirex	RESULT		UNITS ug/kg
SURROGATE Tetrachloro-m-xylene	PERCENT RECOVERY 66 DIL	RECOVERY LIMITS (31 - 131)	
Decachlorobiphenyl	106 DIL	(18 - 145)	
NOTE (S).			

 $[\]label{eq:DIL} \textbf{DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-DUP7

GC Semivolatiles

Lot-Sample #: A0J040425-02 Date Sampled: 10/01/10 11: Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.08 g	Final Wgt/Vol: 10 mL
% Moisture: 25	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 830 J	REPORTING LIMIT 44	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	69 DIL	(31 - 131)	
${ t Decachlorobiphenyl}$	112 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes." Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-031

GC Semivolatiles

Lot-Sample #: A0J040425-029 Date Sampled: 10/01/10 13:05 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix: SO
Dilution Factor: 10	Initial Wgt/Vol:	30.1 g	Final Wqt/Vol: 10 mL
% Moisture: 24	Method	SW846 8081	3
PARAMETER Mirex	RESULT 420 J	REPORTING LIMIT 44	UNITSug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	365 DIL,*	(31 - 131)	
Decachlorobiphenyl	70 DIL	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-032

GC Semivolatiles

Lot-Sample #: A0J040425-032 Date Sampled: 10/01/10 14:0 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.11 g	Final Wgt/Vol: 10 mL
% Moisture: 21	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 740	REPORTING LIMIT 42	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	93 DIL	(31 - 131)	
Decachlorobiphenyl	92 DIL	(18 - 145)	

<u>NOTE (S) : _____</u>

Results and reporting limits have been adjusted for dry weight.

 $[\]label{eq:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: FPS10-033

GC Semivolatiles

Lot-Sample #: A0J040425-035 Date Sampled: 10/01/10 15:50 Prep Date: 10/06/10	**	10/02/10	Matrix: SO
Prep Batch #: 0279070	Analysis Date:	10/08/10	
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.03 g	Final Wgt/Vol: 10 mL
% Moisture: 27	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 590	REPORTING LIMIT 45	UNITSuq/kq
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	97 DIL	(31 - 131)	
Decachlorobiphenyl	76 DIL	(18 - 145)	
NOTE (S).			

 $\label{eq:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-034

GC Semivolatiles

Lot-Sample #: A0J040425-038 Date Sampled: 10/01/10 17:10 Prep Date: 10/06/10 Prep Batch #: 0279070		10/02/10	Matrix : SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 22	Method:	SW846 8081B	
		REPORTING	
PARAMETER	RESULT	LIMIT U	NITS
Mirex	1100	42	ng/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	99 DIL	(31 - 131)	
Decachlorobiphenyl	75 DIL	(18 - 145)	
NOTE (S):			·

 $\label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Client Sample ID: FPS10-023

General Chemistry

Lot-Sample #...: A0J040425-004 Work Order #...: L7XGD Matrix.....: S0
Date Sampled...: 09/30/10 09:55 Date Received..: 10/02/10

% Moisture....: 41

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 58.8
 10.0
 %
 MCAWW 160.3 MOD
 10/06-10/07/10
 0279279

Dilution Factor: 1

Total Organic 25000 3400 mg/kg MSA WALKLEY-BLACK 10/08/10 0281055 Carbon

Dilution Factor: 2

NOTE(S):

Client Sample ID: FPS10-024

General Chemistry

Lot-Sample #...: A0J040425-007 Work Order #...: L7XHH

Matrix..... SO

Date Sampled...: 09/30/10 11:05 Date Received..: 10/02/10

% Moisture....: 32

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	68.4	10.0 ution Fact	% or; 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
Total Organic Carbon	28000	2900	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055
	Dil	ution Fact	or: 2		•	

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-027

General Chemistry

Lot-Sample #...: A0J040425-016

Work Order #...: L7XH4

Matrix....: SO

Date Sampled...: 09/30/10 14:55 Date Received..: 10/02/10

% Moisture....: 43

PARAMETER	RESULT	RL_	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	56.8 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
Total Organic Carbon	29000 Dil	3500 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-028

General Chemistry

Lot-Sample #...: A0J040425-019 Work Order #...: L7XH9 Matrix.....: S0

Date Sampled...: 09/30/10 16:30 Date Received..: 10/02/10

% Moisture....: 46

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	53.7 Dil	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
Total Organic Carbon	5600	3700 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-029

General Chemistry

Lot-Sample #...: A0J040425-022 Work Order

Work Order #...: L7XJE

Matrix..... SO

Date Sampled...: 10/01/10 10:20 Date Received..: 10/02/10

% Moisture....: 19

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	80.7	10.0 ation Facto	% or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
Total Organic Carbon	22000	2500	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055
Calabon	Dil	ntion Facto	or: 2			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-030

General Chemistry

Lot-Sample #...: A0J040425-025

Work Order #...: L7XJH

Matrix....: SO

Date Sampled...: 10/01/10 11:45 Date Received..: 10/02/10

% Moisture....: 27

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	73.5	10.0	%	MCAWW 160.3 MOD	10/06-10/07/10	0279279
	Di.]	ution Fact	or: 1			
Total Organic Carbon	18000	2700	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055
	Dil	ution Fact	or: 2			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-DUP7

General Chemistry

Lot-Sample #...: A0J040425-026 Work Order #...: L7XJJ Matrix.....: S0

Date Sampled...: 10/01/10 11:45 Date Received..: 10/02/10

% Moisture....: 25

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	75.0	10.0	% r: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
Total Organic Carbon	21000	2700	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055
	Dilı	ıtion Facto	r: 2			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-031

General Chemistry

Matrix..... SO

Lot-Sample #...: A0J040425-029 Work Order #...: L7XJ2

Date Sampled...: 10/01/10 13:05 Date Received..: 10/02/10

% Moisture....: 24

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	75.5	10.0	원 or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
	511	descon ruce	01. 1			
Total Organic Carbon	270 00	2600	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055
	Dil	ution Fact	or; 2		`	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: FPS10-032

General Chemistry

Lot-Sample #...: A0J040425-032

Work Order #...: L7XKK Date Sampled...: 10/01/10 14:05 Date Received..: 10/02/10 Matrix..... SO

% Moisture....: 21

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	79.1	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
Total Organic Carbon	20000	2500	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055

NOTE(S):

RL. Reporting Limit

Client Sample ID: FPS10-033

General Chemistry

Lot-Sample #...: A0J040425-035 Work Order #...: L7XKT Matrix.....: S0

Date Sampled...: 10/01/10 15:50 Date Received..: 10/02/10

% Moisture....: 27

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	72.7	10.0	\$ or. 1	MCAWW 160.3 MOD	10/06-10/07/10	0279279
	DII	ucion Facto	JI; I			
Total Organic Carbon	30000	2700	mg/kg	MSA WALKLEY-BLACK	10/08/10	0281055
	Dil	ution Fact	or; 2			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-034

General Chemistry

Lot-Sample #...: A0J040425-038 Work Order #...: L7XK5 Matrix.....: S0
Date Sampled...: 10/01/10 17:10 Date Received..: 10/02/10

% Moisture....: 22

PREPARATION-PREP PARAMETER RESULT RLUNITS METHOD ANALYSIS DATE BATCH # Percent Solids 77.7 10.0 MCAWW 160.3 MOD 10/06-10/07/10 0279279 Dilution Factor: 1 Total Organic 26000 2600 MSA WALKLEY-BLACK 10/08/10 0281055 mg/kg Carbon Dilution Factor: 2

NOTE(S):

RL Reporting Limit

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FP\$10-023

Lab Sample ID:

200-1816-1

Client Matrix:

Solid

Date Sampled: 09/30/2010 0955

Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1816-B-1.txt

Dilution:

Initial Weight/Volume:

109.54 g

Date Analyzed:

1.0

10/05/2010 1409

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	TO THE OWNER, MARKET VIEW AND THE PARTY AND	0.8			Alder Affordation and a second a
Sand		39.9			
Coarse Sand		0.2			
Medium Sand		2.9			
Fine Sand		36.8 ₁			
Silt		50.4 (0.)	•		
Clay		6.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-024

Lab Sample ID:

200-1816-2

10/05/2010 1413

Client Matrix:

Solid

Date Sampled: 09/30/2010 1105 Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1816-B-2.txt

Dilution:

Initial Weight/Volume:

109,24 g

Date Analyzed:

1.0

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			#W-E
Sand		31.6			
Coarse Sand		0.2			
Medium Sand		2.2			
Fine Sand		29.2			
Silt		54.0			
Clay		14.4			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-027

Lab Sample ID:

200-1816-3

Client Matrix:

Solid

10/05/2010 1416

Date Sampled: 09/30/2010 1455 Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1816-B-3.txt

Dilution:

Initial Weight/Volume:

105.14 g

Date Analyzed:

1.0

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)		Qualifier	NONE	NONE
Gravel	AVA TO THE TOTAL PROPERTY OF THE PARTY OF TH	0.0			And the second s	Annual Comment of the second distribution of the property of the second
Sand		24.9				
Coarse Sand		0.1				
Medium Sand		1.5				
Fine Sand		23.3				
Silt		61.4	260			
Clay		13.7	/X)			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-028

Lab Sample ID:

200-1816-4

10/05/2010 1419

Client Matrix:

Solid

Date Sampled: 09/30/2010 1630

Date Received; 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

10.6

Dilution:

Lab File ID:

200-1816-B-4.txt

NONE

Clay

Initial Weight/Volume:

Qualifier

103.84 g

1.0

Final Weight/Volume:

NONE

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	
Gravel		0.0	
Sand		26,7	
Coarse Sand		0.1	
Medium Sand		1.9	
Fine Sand		24.7	
Silt		62.7	Λ

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FP\$10-029

Lab Sample ID:

200-1816-5

10/05/2010 1422

Client Matrix:

Solid

Date Sampled: 10/01/2010 1020

Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1816-B-5.txt

Dilution:

1.0

Initial Weight/Volume:

104.18 g

Final Weight/Volume:

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	and Market (1907) 1907 (1907)	0.9			
Sand		23.3			
Coarse Sand		0.1			
Medium Sand		1.3			
Fine Sand		21.9			
Silt		66.0			
Clay		9.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-030

Lab Sample ID:

200-1816-6

Client Matrix:

Solid

Date Sampled: 10/01/2010 1145

Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab Fife ID:

200-1816-B-6.txt

NONE

Dilution:

Initial Weight/Volume:

Qualifier

101.03 g

Date Analyzed:

1.0

10/05/2010 1424

Final Weight/Volume:

NONE

Date Prepared:

Result (%) DryWt Corrected: N Analyte Gravel (2.9)Sand 34.2 0.2 Coarse Sand 2.0 Medium Sand Fine Sand 32.0 ^{51,0} 7 Silt Clay

62.9

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-031

Lab Sample ID:

200-1816-7

Client Matrix:

Solid

10/05/2010 1429

Date Sampled: 10/01/2010 1305 Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

Lab File ID:

200-1816-B-7.txt

N/A

Dilution:

Initial Weight/Volume:

104.28 g

Date Analyzed:

1.0

Final Weight/Volume:

Analyte	DryWt Corrected; N	Result (%)		Qualifier	NONE	NONE
Gravel		0,0	The state of the s	Control of the contro		- West and the second s
Sand		15.1				
Coarse Sand		0,1				
Medium Sand		0.4				
Fine Sand		14.6	, 🔍			
Şilt		73.4	<i>لالا</i> ، ۱			
Clay		11.5	· ·			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-032

Lab Sample ID:

200-1816-8

10/05/2010 1431

Client Matrix:

Solid

Date Sampled: 10/01/2010 1405

Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1816-D-8.txt

Dilution:

Initial Weight/Volume:

104.88 g

1.0

Final Weight/Volume:

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	AAV 15.00 A SALES SELECT A SALESSA A SALES	0.0			7
Sand		41.4			
Coarse Sand		0.0			
Medium Sand		1.2			
Fine Sand		40.2			
Silt	•	50.8 / %	Q		
Clay		7.8 م			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-033

Lab Sample ID:

200-1816-9

10/05/2010 1438

Client Matrix:

Solid

Date Sampled: 10/01/2010 1550

Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1816-B-9.txt

Initial Weight/Volume:

104.65 g

Dilution:

Date Analyzed:

1.0

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qua	alifier NO		NONE
Gravel	TO A CONTROL OF THE STATE OF TH	0.0		WART 17 TO \$1.70 M \$ 17 W	995 (1982) - 1982 (1994) (1994) (1994) (1994) (1994) (1994)	ATTENNESS SOMMEN OF STREET, SECTION OF STREET, SECT
Sand		13.7				
Coarse Sand		0.1				
Medium Sand		0.6				
Fine Sand		13.0	0			
Silt		74.6	ΔO 1. (2)			
Clay		11.7	40.			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1816-1

Sdg Number: A0J040425

Client Sample ID:

FPS10-034

Lab Sample ID:

200-1816-10

10/05/2010 1441

Client Matrix:

Solid

Date Sampled: 10/01/2010 1710 Date Received: 10/05/2010 1020

D422 Grain Size

Method:

D422

Analysis Batch: 200-7549

Instrument ID:

D422_import

Preparation:

Lab File ID:

200-1816-B-10.txt

NONE

Dilution:

N/A

Final Weight/Volume:

NONE

1.0

Initial Weight/Volume:

Qualifier

103.08 g

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (9	%)
Gravel		0.0	a i manda in manda in a da a da a da a da a da a da a
Sand		25.2	
Coarse Sand		0.1	
Medium Sand		0.5	
Fine Sand		24.6	٦
Silt		65.5	24.8
Clay		9,3	X

Client Sample ID: FPS10-DUP8

GC Semivolatiles

Lot-Sample #: A0J060517-002 Date Sampled: 10/02/10 09:55 Prep Date: 10/14/10 Prep Batch #: 0287028	==	10/05/10	Matrix SO
Dilution Factor: 10	Initial Wqt/Vol:	30.05 q	Final Wqt/Vol: 10 mL
% Moisture: 24	Method:	SW846 8081B	5 .
PARAMETER Mirex	RESULT 170		units ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	96 DIL	(31 - 131)	
Decachlorobiphenyl	97 DIL	(18 - 145)	
NOVER (G).			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes. Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-035

GC Semivolatiles

-		Work Order #:		Matri	ж so
Date Sampled:	10/02/10 10:30	Date Received:	10/05/10		
Prep Date:	10/14/10	Analysis Date:	10/17/10		
Prep Batch #:	0287028				
Dilution Factor:	10	<pre>Initial Wgt/Vol:</pre>	30.02 g	Final	Wgt/Vol: 10 mL
% Moisture:	24	Method:	SW846 8081	В	
		4	REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	
Mirex		110	44	ug/kg	
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Tetrachloro-m-xy	ene	120 DIL	(31 - 131)		
Decachlorobipheny	/1	125 DIL	(18 - 145)		
NOTE (S) -					

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-036

GC Semivolatiles

Lot-Sample #: A0J060517-007	Work Order #:	L73G71AE	Matrix: SO
Date Sampled: 10/02/10 12:00	Date Received:	10/05/10	
Prep Date: 10/14/10	Analysis Date:	10/17/10	
Prep Batch #: 0287028			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.17 g	Final Wgt/Vol: 10 mL
% Moisture: 25	Method:	SW846 8081	В
•		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	790 丁	44	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	148 DIL,*	(31 - 131)	•
Decachlorobiphenyl	152 DIL,*	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-037

GC Semivolatiles

Lot-Sample #: A0J060517-010 Date Sampled: 10/02/10 13:10	*-		Matrix: SO
Prep Date: 10/14/10	Analysis Date:	•	
Prep Batch #: 0287028			
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.11 g	Final Wgt/Vol: 10 mL
% Moisture: 28	Method:	SW846 8081	В
		DEDODETNA	
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	440 J	46	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	124 DIL	(31 - 131)	
Decachlorobiphenyl	154 DIL,*	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-038

GC Semivolatiles

Lot-Sample #: A0J060517-013 Date Sampled: 10/02/10 14:25 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix : SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.07 g	Final Wgt/Vol: 10 mL
% Moisture 15	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	470 J	39	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	116 DIL	(31 - 131)	
Decachlorobiphenyl	160 DIL,*	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-039

GC Semivolatiles

Lot-Sample #: A0J060517-016 Date Sampled: 10/03/10 10:50 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 23	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 650	REPORTING LIMIT 43	UNITS ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	111 DIL	(31 - 131)	
Decachlorobiphenyl	123 DIL	(18 - 145)	
NOTE(S):			

 $\label{eq:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-040

GC Semivolatiles

Lot-Sample #: A0J060517-019 Date Sampled: 10/03/10 12:3 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix	: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.08 g	Final	Wgt/Vol: 10 mL
% Moisture: 26	Method:	SW846 8081	В	·
PARAMETER	RESULT	REPORTING LIMIT	UNITS	
Mirex	360	45	ug/kg	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Tetrachloro-m-xylene	118 DIL	(31 - 131)		
Decachlorobiphenyl	119 DIL	(18 - 145)		
NOTE(S):				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes,

Client Sample ID: FPS10-041

GC Semivolatiles

Lot-Sample #: A0J060517-022 Date Sampled: 10/04/10 09:55 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.01 g	Final Wgt/Vol: 10 mL
% Moisture: 37	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	1100	53	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	123 DIL	(31 - 131)	
Decachlorobiphenyl	149 DIL,*	(18 - 145)	
NOTE(S):			

 $[\]label{eq:DIL} \textbf{DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-044

GC Semivolatiles

Lot-Sample #: A0J060517-031 Date Sampled: 10/04/10 13:2 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.07 g	Final Wgt/Vol: 10 mL
% Moisture: 43	Method:	SW846 8081	<u>-</u> .
PARAMETER Mirex	RESULT 670 J	REPORTING LIMIT 58	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	214 DIL,*	(31 - 131)	
Decachlorobiphenyl	158 DIL,*	(18 - 145)	
NORTH (d)			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-DUP9

GC Semivolatiles

Lot-Sample #: A0J060517-032 Date Sampled: 10/04/10 13:2 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matri	x:	SO
Dilution Factor: 10	Initial Wgt/Vol:	30.14 g	Final	Wgt/Vol:	10 mL
% Moisture: 41	Method:	SW846 8081	В		
PARAMETER Mirex	RESULT 620 J	REPORTING LIMIT 56	UNITS ug/kg		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	136 DIL,*	(31 - 131)			
Decachlorobiphenyl	194 DIL,*	(18 - 145)			
NOTE(S):					

 $[\]textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes. } \\$

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-045

GC Semivolatiles

Lot-Sample #: A0J060517-035 Date Sampled: 10/04/10 15:35 Prep Date: 10/14/10		10/05/10	Matrix: SO
Prep Batch #: 0287028	Thisial Wat/Wal	20.06 ~	Circl Not Wel 10 ml
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	_	Final Wgt/Vol: 10 mL
% Moisture: 27	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 1400	REPORTING LIMIT 45	UNITS ug/kg
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	126 DIL	(31 - 131)	
Decachlorobiphenyl	127 DIL	(18 - 145)	

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-046

GC Semivolatiles

Lot-Sample #: A0J060517-03 Date Sampled: 10/04/10 16: Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 35	Method:	=	В
PARAMETER Mirex	RESULT	REPORTING LIMIT 51	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	133 DIL,*	(31 - 131)	
Decachlorobiphenyl	147 DIL,*	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

* Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-047

GC Semivolatiles

Lot-Sample #: A0J060517-041 Date Sampled: 10/05/10 09:1 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30,17. g	Final Wgt/Vol: 10 mL
% Moisture: 28	Method	SW846 8081E	3
PARAMETER Mirex	RESULT 600 J		UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	4150 DIL,*	(31 - 131)	•
Decachlorobiphenyl	155 DIL,*	(18 - 145)	
NOWE (d)			•

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

* Surrogate recovery is outside stated control limits.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-048

GC Semivolatiles

Lot-Sample #: A0J060517-044 Date Sampled: 10/05/10 10:40 Prep Date: 10/14/10 Prep Batch #: 0287028		10/05/10	Matrix SO
Dilution Factor: 10	Initial Wgt/Vol:	30.02 g	Final Wqt/Vol: 10 mL
% Moisture: 27	Method	_	3 ·
PARAMETER Mirex	RESULT 570 J	REPORTING LIMIT 45	UNITS ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	157 DIL,*	(31 ~ 131)	
Decachlorobiphenyl	104 DIL	(18 - 145)	
NOTE(S):			

 $[\]textbf{DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}\\$

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-DUP8

General Chemistry

Lot-Sample #...: A0J060517-002 Work Order #...: L73F5 Matrix.....: SO

Date Sampled...: 10/02/10 09:55 Date Received..: 10/05/10

% Moisture....: 24

PARAMETER Percent Solids	RESULT 75.7	- RL 10.0	UNITS &	METHOD MCAWW 160.3 MOD	PREPARATION- ANALYSIS DATE 10/14-10/15/10	PREP BATCH # 0287351			
•	Dilution Factor: 1								
Total Organic Carbon	6900	1300 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424			

NOTE (S):

Client Sample ID: FPS10-035

General Chemistry

Lot-Sample #...: A0J060517-004

Work Order #...: L73GK

Matrix..... SO

Date Sampled...: 10/02/10 10:30 Date Received..: 10/05/10

% Moisture....: 24

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	75.6	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	5800	1300	mg/kg or: 1	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: FPS10-036

General Chemistry

Lot-Sample #...: A0J060517-007 Work Order #...: L73G7 Matrix.....: S0
Date Sampled...: 10/02/10 12:00 Date Received..: 10/05/10

% Moisture....: 25

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	75.2	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	7500	1300	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
	Dil	ution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-037

General Chemistry

Lot-Sample #...: A0J060517-010 Work

Work Order #...: L73HL

Matrix....: SO

Date Sampled...: 10/02/10 13:10 Date Received..: 10/05/10

% Moisture....: 28

						PREPARATION-	PREP
PA	RAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Pe	rcent Solids	. 72.3	10.0 tion Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
	tal Organic Carbon	5900	1400	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
		Dilu	tion Facto	or: 1			
	(a)						

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-038

General Chemistry

Lot-Sample #...: A0J060517-013 Work Order #...: L73HT Matrix.....: S0

Date Sampled...: 10/02/10 14:25 Date Received..: 10/05/10

% Moisture....: 15

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	84.7	10.0	ቴ or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic	4600	1200	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424
Carbon	Dilu	ıtion Facto	or: 1			

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-039

General Chemistry

Lot-Sample #...: A0J060517-016 Work Order #...: L73H2 Matrix.....: S0
Date Sampled...: 10/03/10 10:50 Date Received..: 10/05/10

% Moisture....: 23

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	77.0	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	3700	1300	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286424

NOTE(S):

RL Reporting Limit

Client Sample ID: FPS10-040

General Chemistry

Matrix....: SO

Lot-Sample #...: A0J060517-019 Work Order #...: L73H6

Date Sampled...: 10/03/10 12:15 Date Received..: 10/05/10

% Moisture....: 26

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	73.8	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Çarbon	5100	1400 ution Fact	mg/kg	MSA WALKLBY-BLACK	. 10/13/10	0286424

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: FPS10-041

General Chemistry

Lot-Sample #...: A0J060517-022 Work Order #...: L73JA Matrix.....: S0

Date Sampled...: 10/04/10 09:55 Date Received..: 10/05/10

% Moisture....: 37

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	62.8	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	1900 J ·	1600 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE (S):

Client Sample ID: FPS10-044

General Chemistry

Lot-Sample #...: A0J060517-031 Work Order #...: L73KK Matrix.....: S0
Date Sampled...: 10/04/10 13:20 Date Received..: 10/05/10

% Moisture....: 43

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	57.3	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	1200 X J	1700 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Client Sample ID: FPS10-DUP9

General Chemistry

Lot-Sample #...: A0J060517-032 Work Order #...: L73KW Matrix.....: S0
Date Sampled...: 10/04/10 13:20 Date Received..: 10/05/10

% Moisture..... 41

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	59.4	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	1100 \$ J	1700	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Client Sample ID: FPS10-045

General Chemistry

Lot-Sample #...: A0J060517-035 Work Order #...: L73LQ Matrix..... SO Date Sampled...: 10/04/10 15:35 Date Received..: 10/05/10

% Moisture....: 27

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	73.4	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	1100 pt J	1400	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Client Sample ID: FPS10-046

General Chemistry

Lot-Sample #...: A0J060517-038 Work Order #...: L73MH Matrix.....: S0
Date Sampled...: 10/04/10 16:20 Date Received..: 10/05/10

% Moisture....: 35

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	65.2	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	1100 pf J	1500 ution Facto	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Client Sample ID: FPS10-047

General Chemistry

Lot-Sample #...: A0J060517-041 Work Order #...: L73MR Matrix.....: S0
Date Sampled...: 10/05/10 09:15 Date Received..: 10/05/10

% Moisture....: 28

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	72.2	10.0	% or: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	920 pt J	1400 ution Fact	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Client Sample ID: FPS10-048

General Chemistry

Lot-Sample #...: A0J060517-044

Work Order #...: L73M0

Matrix..... SO

Date Sampled...: 10/05/10 10:40 Date Received..: 10/05/10

% Moisture.,...: 27

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	72.9 Di	10.0 lution Fact	% cor: 1	MCAWW 160.3 MOD	10/14-10/15/10	0287351
Total Organic Carbon	4200	1400	mg/kg	MSA WALKLEY-BLACK	10/13/10	0286421
	Di	lution Fact	or: 1			

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-035

Lab Sample ID:

200-1858-1

Client Matrix:

Solid

Date Sampled: 10/02/2010 1030

Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-1.txt

Dilution:

Initial Weight/Volume:

137.72 g

Date Analyzed:

1.0

10/07/2010 2059

Final Weight/Volume:

Date Prepared:

Analyte

Clay

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand Silt

0.7 31.3

1.4 4.9 25.0

> 55.1 12.9

68.0

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-036

Lab Sample ID:

200-1858-2

Client Matrix:

Solid

Date Sampled: 10/02/2010 1200

Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-2.txt

Dilution:

Initial Weight/Volume:

158.04 g

Date Analyzed:

10/07/2010 2118

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	(Qualifier	NONE	NONE
Gravel		0.0		7 TANA TANA TANA TANA TANA TANA TANA TAN	APPROXIMATE SELECTION OF THE SECOND OF THE SECOND OF	-called Colland School of College Sol at water
Sand		34.0				
Coarse Sand		0.1				
Medium Sand		1.6				
Fine Sand		32.3				
Silt		55.2	G. NO			
Clay		10.8	0,			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-037

Lab Sample ID:

200-1858-3

Client Matrix:

Solid

Date Sampled: 10/02/2010 1310 Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-3,txt

Dilution:

Initial Weight/Volume:

145.9 g

Date Analyzed:

1.0

10/07/2010 2120

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0	TECH ELWING IN THIS CONTROL OF THE PROPERTY OF THE		V
Sand		27.2			
Coarse Sand		0.0			
Medium Sand		1.9			
Fine Sand		25.3	i		
Silt		60.0	2.8		
Clay		12.8	(v.		

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-038

Lab Sample ID:

200-1858-4

Client Matrix:

Solid

Date Sampled: 10/02/2010 1425 Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-4.txt

Dilution:

Initial Weight/Volume:

133.47 g

Date Analyzed:

1.0

10/07/2010 2122

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	**************************************	0.0			
Sand		53.1			
Coarse Sand		0.0			
Medium Sand		7.0			
Fine Sand		46.1			
Silt		42.0	.^		
Clay		4.9 \(\lambda\)	0,		

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-039

Lab Sample ID:

200-1858-5

Client Matrix:

Solid

10/07/2010 2125

Date Sampled: 10/03/2010 1050 Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-5.txt

NONE

Dilution:

Initial Weight/Volume:

NONE

159.22 g

Date Analyzed:

1.0

Final Weight/Volume:

Qualifier

Analyte	DryWt Corrected: N	Result (%)
Gravel	(100-74-100-100-100-100-100-100-100-100-100-10	0.0
Sand		58.6
Coarse Sand		0.2
Medium Sand		4.0
Fine Sand		54.4
Silt		31.0
Clay		10.4

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-040

Lab Sample ID:

200-1858-6

Client Matrix:

Solid

Date Sampled: 10/03/2010 1215

Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-6.txt

Dilution:

Initial Weight/Volume:

158.32 g

Date Analyzed:

1.0

10/07/2010 2127

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)		Qualifier	NONE	NONE
Gravel		1.6				
Sand		48.1				
Çoarse Sand		0.9				
Medium Sand		7,9				
Fine Sand		39.3				
Silt		37.4	40.3			
Clay		12.9	50. J			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-041

Lab Sample ID:

200-1858-7

Client Matrix:

Solid

Date Sampled: 10/04/2010 0955

D422 Grain Size

Date Received: 10/07/2010 1010

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-D-7.txt

Dilution:

Method:

1.0

Initial Weight/Volume:

137.28 g

Date Analyzed:

10/07/2010 2140

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE	
Gravel		0.0	omittee de la companya de la company			
Sand		24.6				
Coarse Sand		0.0				
Medium Sand		0.5				
Fine Sand		24.1	\			
Silt		60.9	.4			
Clay		14.5				

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-044

Lab Sample ID:

200-1858-8

Client Matrix:

Solid

10/07/2010 2147

Date Sampled: 10/04/2010 1320

Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-8,txt

Dilution:

Initial Weight/Volume:

101.13 g

Date Analyzed:

Analyte

1.0

Final Weight/Volume:

Date Prepared:

DryWt Corrected: N

Result (%)

Qualifier

NONE

NONE

Gravel Sand Coarse Sand Medium Sand Fine Sand

Silt Clay

0.0 10.3)

0.2 0,7

9,4 65.4

24.3

89.7

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-045

Lab Sample ID:

200-1858-9

Client Matrix:

Solid

Date Sampled: 10/04/2010 1535 Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-9.txt

Dilution:

Initial Weight/Volume:

150.87 g

Date Analyzed:

1.0

10/07/2010 2151

Finał Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0	. N A L A E DD- 2002. I . M E . A E P.M. 2002. M		
Sand		25.1			
Coarse Sand		0.0			
Medium Sand		1.0			
Fine Sand		24.1			
Silt		24.1 61.4 / \d\. \cdot\			
Clay		13.5			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-046

Lab Sample ID:

200-1858-10

Client Matrix:

Solid

Date Sampled: 10/04/2010 1620

Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

Lab File ID:

200-1858-B-10.txt

NONE

Dilution:

Initial Weight/Volume:

100.27 g

Date Analyzed:

1.0

10/07/2010 2154

Final Weight/Volume:

NONE

Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier
Gravel		0.0	
Sand		15.4	
Coarse Sand		0.1	
Medium Sand		0.4	
Fine Sand		14.9	
Silt		14.9 64.6 4 \(\)	
Clay		20.0	

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1858-1

Sdg Number: A0J060517

Client Sample ID:

FPS10-048

Lab Sample ID:

200-1858-12

Client Matrix:

Solid

10/07/2010 2157

Date Sampled: 10/05/2010 1040

Date Received: 10/07/2010 1010

D422 Grain Size

Method:

D422

Analysis Batch: 200-7686

Instrument ID:

D422_import

Preparation:

N/A

200-1858-B-12.txt

Dilution:

Lab File ID: Initial Weight/Volume:

117.93 g

Date Analyzed:

1.0

Final Weight/Volume:

Date Prepared:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.5			
Sand		42.1			
Coarse Sand		0.4			
Medium Sand		3.4			
Fine Sand		38.3			
Silt		48,2 \(\lambda \lambd			
Clay		9,2 ['])			

Client Sample ID: FPS10-042

GC Semivolatiles

Lot-Sample #: A1C080536-001 Date Sampled: 10/04/10 11:15 Prep Date: 03/09/11 Prep Batch #: 1068030		10/05/10	Matrix: SO
Dilution Factor: 2 % Moisture: 34	<pre>Initial Wgt/Vol: Method</pre>	_	3,
PARAMETER Mirex	RESULT 220	REPORTING	UNITS ug/kg
SURROGATE Tetrachloro-m-xylene Decachlorobiphenyl	PERCENT RECOVERY 79 88	RECOVERY LIMITS (31 - 131) (18 - 145)	
NOTE (S):			·

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-043

GC Semivolatiles

Lot-Sample #: A1C080536-002 Date Sampled: 10/04/10 12:20			Matrix SO
Prep Date: 03/09/11	Analysis Date:	03/15/11	
Prep Batch #: 1068030			
Dilution Factor: 2	<pre>Initial Wgt/Vol:</pre>	30.03 g	Final Wgt/Vol: 10 mL
% Moisture: 37	Method:	SW846 8081E	3
			•
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	280	11	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	91	(31 - 131)	
Decachlorobiphenyl	121	(18 - 145)	
NOTE (2).			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-042

General Chemistry

Lot-Sample #...: A1C080536-001 Work Order #...: MFC39 Matrix....: S0
Date Sampled...: 10/04/10 11:15 Date Received..: 10/05/10

% Moisture....: 34

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 65.8
 10.0
 %
 MCAWW 160.3 MOD
 03/16-03/17/11
 1075163

Dilution Factor: 1

303

Client Sample ID: FPS10-043

General Chemistry

Lot-Sample #...: A1C080536-002 Work Order #...: MFC4D Matrix...... S0

Date Sampled...: 10/04/10 12:20 Date Received..: 10/05/10

% Moisture....: 37

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 62.8
 10.0
 %
 MCAWW 160.3 MOD
 03/16-03/17/11
 1075163

Dilution Factor: 1

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4885-1

Sdg Number: A1D250475

Client Sample ID:

FPS10-042

Lab Sample ID:

200-4885-1

Client Matrix:

Solid

Date Sampled: 10/04/2010 1115

Date Received: 04/26/2011 1240

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-17431

Instrument ID:

D422_import

N/A

Prep Batch:

Lab File ID:

200-4885-A-1.txt

Dilution:

1.0

N/A

Initial Weight/Volume:

78.63 g

Analysis Date:

04/27/2011 2127

Prep Date:

N/A

Final Weight/Volume:

Analyte DryWt Corrected: N Result (%) Qualifier NONE NONE Gravel 0.2 Sand 28.0 Coarse Sand 0.6 Medium Sand 1.7 Fine Sand 25.7 Silt 53.8 Clay 18.0

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4885-1

Sdg Number: A1D250475

Client Sample ID:

FPS10-043

Lab Sample ID:

200-4885-2

Client Matrix:

Solid

Date Sampled: 10/04/2010 1220

Date Received: 04/26/2011 1240

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-17431

Instrument ID:

D422_import

N/A

Prep Batch:

Lab Fife ID:

200-4885-A-2.txt

Dilution:

1.0

N/A

Initial Weight/Volume:

82.33 g

Analysis Date:

04/27/2011 2131

Prep Date:

N/A

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	realists of Pilling Medical Advisor Philadel Blood of the construction for the Pilling Construction of the	0.0			
Sand		14.3			
Coarse Sand		0.3			
Medium Sand		1.6			
Fine Sand		12.4			
Silt		61.8			
Clay		23.9			

Client Sample ID: FPS10-054

GC Semivolatiles

Lot-Sample #: A1C300562-003 Date Sampled: 03/29/11 09:4 Prep Date: 04/04/11 Prep Batch #: 1094042		03/30/11	Matrix SO
Dilution Factor: 50	<pre>Initial Wgt/Vol:</pre>	29.99 g	Final Wgt/Vol: 10 mL
% Moisture: 27	Method:	-	3
PARAMETER Mirex	RESULT_	REPORTING LIMIT 230	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	130 DIL	(31 - 131)	
Decachlorobiphenyl	188 DIL,*	(18 - 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes. * Surrogate recovery is outside stated control limits.

30

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-056

GC Semivolatiles

Lot-Sample #: A1C300562-009 Date Sampled: 03/29/11 11:50 Prep Date: 04/04/11 Prep Batch #: 1094042		03/30/11	Matrix SO
Dilution Factor: 50	<pre>Initial Wgt/Vol:</pre>	30.1 g	Final Wgt/Vol: 10 mL
% Moisture: 30	Method:	SW846 8081	В
PARAMETER Mirex	RESULT 470	REPORTING LIMIT 240	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	132 DIL,*	(31 - 131)	
Decachlorobiphenyl	84 DIL	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

* Surrogate recovery is outside stated control limits.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-057

GC Semivolatiles

Lot-Sample #: A1C300562-012 Date Sampled: 03/29/11 14:00 Prep Date: 04/04/11 Prep Batch #: 1094042		03/30/11	Matrix SO
Dilution Factor: 100	Initial Wgt/Vol:	29.92 g	Final Wgt/Vol: 10 mL
% Moisture: 29	Method:	-	<u>-</u>
PARAMETER Mirex	RESULT 980 J		urs //kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	139 DIL,*	(31 - 131)	
Decachlorobiphenyl	893 DIL,*	(18 - 145)	
NOTE(S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-057FD

GC Semivolatiles

Lot-Sample #: A1C300562-01: Date Sampled: 03/29/11 14: Prep Date: 04/04/11 Prep Batch #: 1094042		03/30/11	Matrix: SO
Dilution Factor: 100	Initial Wgt/Vol:	30.04 g	Final Wgt/Vol: 10 mL
% Moisture: 29	Method	SW846 8081B	
PARAMETER Mirex	RESULT		NITS g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	194 DIL,*	(31 - 131)	
Decachlorobiphenyl	0.0 DIL,*	(18 - 145)	

 $[\]label{eq:def:DIL} \textbf{DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.}$

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-058

GC Semivolatiles

Lot-Sample #: A1C300562-016 Date Sampled: 03/29/11 15:25 Prep Date: 04/04/11 Prep Batch #: 1094042		03/30/11	Matrix SO
Dilution Factor: 100	Initial Wgt/Vol:	30.02 g	Final Wgt/Vol: 10 mL
% Moisture: 28	Method:	SW846 8081B	
PARAMETER Mirex	RESULT		NITS 1g/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	383 DIL,*	(31 - 131)	
Decachlorobiphenyl	482 DIL,*	(18 ~ 145)	

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

PG The percent difference between the original and confirmation analyses is greater than 40%.

^{*} Surrogate recovery is outside stated control limits,

Client Sample ID: FPS10-053

GC Semivolatiles

Lot-Sample #: A1C30059 Date Sampled: 03/28/11 Prep Date: 04/04/11 Prep Batch #: 1094042	15:05 Date Received:	03/29/11	Matrix: SO
Dilution Factor: 100	<pre>Initial Wgt/Vol:</pre>	30 g	Final Wgt/Vol: 10 mL
% Moisture: 35	Method:	-	В
PARAMETER Mirex	RESULT 740 pc J	REPORTING LIMIT 510	UNITS ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	136 DIL,*	(31 - 131)	
Decachlorobiphenyl	213 DIL,*	(18 - 145)	

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

PG The percent difference between the original and confirmation analyses is greater than 40%.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-053 FD

GC Semivolatiles

Lot-Sample #: A1C300593-016			Matrix SO
Date Sampled: 03/28/11 15:05	Date Received:	03/29/11	
Prep Date: 04/04/11	Analysis Date:	04/13/11	
Prep Batch #: 1094042			
Dilution Factor: 100	<pre>Initial Wgt/Vol:</pre>	30 g	Final Wgt/Vol: 10 mL
% Moisture: 32	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	710 PG J	490	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	224 DIL,*	(31 - 131)	
Decachlorobiphenyl	150 DIL,*	(18 - 145)	
NOTE(S):	w		

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

PG The percent difference between the original and confirmation analyses is greater than 40%.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-066

GC Semivolatiles

Lot-Sample #: A1C310607-009 Date Sampled: 03/31/11 11:25 Prep Date: 04/04/11 Prep Batch #: 1094042		03/31/11	Matrix: SO
Dilution Factor: 10	<pre>Initial Wgt/Vol:</pre>	30.08 g	Final Wgt/Vol: 10 mL
% Moisture: 31	Method:	SW846 8081	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Mirex	140	48	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	221 DIL,*	(31 - 131)	
Decachlorobiphenyl	192 DIL,*	(18 - 145)	
NOTE (S):			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: FPS10-054

General Chemistry

Lot-Sample #...: A1C300562-003 Work Order #...: MGDP9 Matrix.....: SO

Date Sampled...: 03/29/11 09:45 Date Received..: 03/30/11

% Moisture....: 27

PARAMETER Percent Solids	RESULT 72.6	RL 10.0	UNITS % or: 1	METHOD MCAWW 160.3 MOD	PREPARATION- ANALYSIS DATE 03/31-04/01/11	PREP BATCH # 1090271
Total Organic Carbon	34000 J	6900	mg/kg	MSA WALKLEY-BLACK	04/12/11	1102074
	Dil	ution Facto	or: 5			

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FPS10-056

General Chemistry

Lot-Sample #...: A1C300562-009 Work Order #...: MGDQH Matrix.....: S0

Date Sampled...: 03/29/11 11:50 Date Received..: 03/30/11

% Moisture....: 30

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	69.7	10.0 ution Facto	% or: 1	MCAWW 160.3 MOD	03/31-04/01/11	1090271
Total Organic Carbon	7900 J	1400 ution Facto	mg/kg	MSA WALKLEY-BLACK	04/12/11	1102074

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FPS10-057

General Chemistry

Lot-Sample #...: A1C300562-012 Work Order #...: MGDQL Matrix.....: SO

Date Sampled...: 03/29/11 14:00 Date Received..: 03/30/11

% Moisture....: 29

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	71.2	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	03/31-04/01/11	1090271
Total Organic Carbon	17000 J	1400 ution Fact	mg/kg	MSA WALKLEY-BLACK	04/12/11	1102074

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FPS10-057FD

General Chemistry

Lot-Sample #...: A1C300562-013 Work Order #...: MGDQM Matrix.....: SO

Date Sampled...: 03/29/11 14:00 Date Received..: 03/30/11

% Moisture....: 29

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	70.9	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	03/31-04/01/11	1090271
Total Organic Carbon	19000 J	7100 ution Fact	mg/kg	MSA WALKLEY-BLACK	04/12/11	1102074

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FPS10-058

General Chemistry

Lot-Sample #...: A1C300562-016 Work Order #...: MGDQQ Matrix.....: SO

Date Sampled...: 03/29/11 15:25 Date Received..: 03/30/11

% Moisture....: 28

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	72.1	10.0 ution Fact	% or: 1	MCAWW 160.3 MOD	03/31-04/01/11	1090271
Total Organic Carbon	32000 J	6900 ution Fact	mg/kg	MSA WALKLEY-BLACK	04/12/11	1102074

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL. Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FPS10-053

General Chemistry

Lot-Sample #...: A1C300593-015 Work Order #...: MGD1L Matrix....: S0
Date Sampled...: 03/28/11 15:05 Date Received..: 03/29/11

% Moisture....: 35

PREPARATION-PREP RESULT UNITS PARAMETER METHOD ANALYSIS DATE BATCH # RL 03/31-04/01/11 1090271 Percent Solids 10.0 왐 65.0 MCAWW 160.3 MOD Dilution Factor: 1 Total Organic 31000 7700 MSA WALKLEY-BLACK 04/11/11 1101254 mg/kg Carbon Dilution Factor: 5

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FPS10-053 FD

General Chemistry

Lot-Sample #...: A1C300593-016 Work Order #...: MGD1M Matrix....: S0
Date Sampled...: 03/28/11 15:05 Date Received..: 03/29/11

% Moisture....: 32

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	67.7	10.0 lution Fact	% tor: 1	MCAWW 160.3 MOD	03/31-04/01/11	1090271
Total Organic Carbon	33000	7400	mg/kg	MSA WALKLEY-BLACK	04/11/11	1101254
270mm (a)						

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

Client Sample ID: FPS10-066

General Chemistry

Lot-Sample #...: A1C310607-009 Work Order #...: MGFTD Matrix.....: S0
Date Sampled...: 03/31/11 11:25 Date Received..: 03/31/11

% Moisture....: 31

PARAMETER Percent Solids	RESULT 69.3	RL 10.0 lution Fac	UNITS	METHOD MCAWW 160.3 MOD	PREPARATION- ANALYSIS DATE 04/01-04/02/11	PREP BATCH # 1091125
Total Organic Carbon	39000 J	7200	mg/kg	MSA WALKLEY-BLACK	04/12/11	1102074

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4528-1

Sdg Number: A1C310607

Client Sample ID:

FPS10-066

Lab Sample ID:

200-4528-1

Client Matrix:

Solid

Date Sampled: 03/31/2011 1125

Date Received: 04/02/2011 0930

D422 Grain Size

Analysis Method:

D422

Analysis Batch: Prep Batch:

75.0

72.0

63.5

37.7

29.9

22.1

17.8

13.5

7.4

3,1

200-16270

Instrument ID:

D422 import

N/A

04/05/2011 2135

N/A

Lab File ID:

200-4528-A-1.txt

NONE

Dilution: Analysis Date: 1.0

Qualifier

Initial Weight/Volume:

133.97 g

Final Weight/Volume:

NONE

Prep Date: N/A

Sieve Size #80 - Percent Finer

Sieve Size #100 - Percent Finer

Sieve Size #200 - Percent Finer

Hydrometer Reading 1 - Percent Finer

Hydrometer Reading 2 - Percent Finer

Hydrometer Reading 3 - Percent Finer

Hydrometer Reading 4 - Percent Finer

Hydrometer Reading 5 - Percent Finer

Hydrometer Reading 6 - Percent Finer

Hydrometer Reading 7 - Percent Finer

Analyte	DryWt Corrected: N	Result (% Passing)
Sieve Size 3 inch - Per	cent Finer	100.0
Sieve Size 2 inch - Per	cent Finer	100.0
Sieve Size 1.5 inch - Po	ercent Finer	100.0
Sieve Size 1 inch - Per	cent Finer	100.0
Sieve Size 0.75 inch - I	Percent Finer	100.0
Sieve Size 0.375 inch -	Percent Finer	100.0
Sieve Size #4 - Percen	t Finer	100.0
Sieve Size #10 - Perce	nt Finer	99.0
Sieve Size #20 - Perce	nt Finer	97.2
Sieve Size #40 - Perce	nt Finer	91.8
Sieve Size #60 - Perce	nt Finer	82.7

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4528-1

Sdg Number: A1C310607

Client Sample ID:

FPS10-066

Lab Sample ID:

200-4528-1

Client Matrix:

Solid

Date Sampled: 03/31/2011 1125 Date Received: 04/02/2011 0930

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16270

Instrument ID:

D422_import

Dilution:

N/A 1.0

Prep Batch:

N/A

Lab File ID:

200-4528-A-1.txt

133.97 g

04/05/2011 2135

Analysis Date: Prep Date:

N/A

Initial Weight/Volume:

Final Weight/Volume:

Analyte DryWt Corrected: N Result (%) Qualifier NONE NONE Gravel 0.0 36.5 Sand Coarse Sand 1.0 Medium Sand 7.2 Fine Sand 28.3 50.0 Silt Clay 13.5

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-054

Lab Sample ID:

200-4493-1

Client Matrix:

Solid

Date Sampled: 03/29/2011 0945

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

Dilution:

N/A 1.0

Prep Batch:

N/A

Lab File ID:

200-4493-A-1,txt

Initial Weight/Volume:

148.26 g

Analysis Date:

04/04/2011 2028

Final Weight/Volume:

Prep Date:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent F	iner	100.0		t to the second control of the second of the	ALLENANDE CONTRACTOR C
Sieve Size 2 inch - Percent F	iner	100.0			
Sieve Size 1.5 inch - Percent	Finer	100.0			
Sieve Size 1 inch - Percent F	iner	100.0			
Sieve Size 0.75 inch - Percen	nt Finer	100.0			
Sieve Size 0.375 inch - Perce	ent Finer	100.0			
Sieve Size #4 - Percent Finer		100.0			
Sieve Size #10 - Percent Fine	er	99.7			
Sieve Size #20 - Percent Fine	er	98.9			
Sieve Size #40 - Percent Fine	er	95.6			
Sieve Size #60 - Percent Fine	er	81.5			
Sieve Size #80 - Percent Fine	şr	72.5			
Sieve Size #100 - Percent Fir	ner	69.7			
Sieve Size #200 - Percent Fir	ner	60.9			
Hydrometer Reading 1 - Perc	ent Finer	30.6			
Hydrometer Reading 2 - Perc	ent Finer	23.2			
Hydrometer Reading 3 - Perc	ent Finer	15.7			
Hydrometer Reading 4 - Perc	ent Finer	12,8			
Hydrometer Reading 5 - Perc	ent Finer	9.8			
Hydrometer Reading 6 - Perc	ent Finer	5.3			
Hydrometer Reading 7 - Perc	ent Finer	2.4			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-054

Lab Sample ID:

200-4493-1

Client Matrix:

Solid

Date Sampled: 03/29/2011 0945

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

N/A

Prep Batch:

N/A

Lab File ID:

200-4493-A-1.txt

Dilution:

1.0

Initial Weight/Volume:

148.26 g

Analysis Date:

04/04/2011 2028

Final Weight/Volum

Prep Date:

N/A

rınaı	vveigni/volume:	

Analyte DryWt Corrected: N Result (%) Qualifier NONE NONE Gravel 0.0 Sand 39.1 Coarse Sand 0.3 Medium Sand 4.1 Fine Sand 34.7 Silt 51.1 Clay 9.8

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-056

Lab Sample ID:

200-4493-2

Client Matrix:

Solid

Date Sampled: 03/29/2011 1150 Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

Dilution:

N/A 1.0

Prep Batch:

N/A

Lab File ID:

200-4493-A-2.txt

Initial Weight/Volume:

113.72 g

Analysis Date: Prep Date:

04/04/2011 2030 N/A

Hydrometer Reading 6 - Percent Finer

Hydrometer Reading 7 - Percent Finer

Final Weight/Volume:

Analyte DryWt Co	rrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent Finer		100.0	e en	4 TANA AN ANAL ANALONG PROPERTY AND ANALONG PARTY.	
Sieve Size 2 inch - Percent Finer		100.0			
Sieve Size 1.5 inch - Percent Finer		100.0			
Sieve Size 1 inch - Percent Finer		100.0			
Sieve Size 0.75 inch - Percent Finer		100.0			
Sieve Size 0.375 inch - Percent Finer		100.0			
Sieve Size #4 - Percent Finer		99.0			
Sieve Size #10 - Percent Finer		98.0			
Sieve Size #20 - Percent Finer		97.9			
Sieve Size #40 - Percent Finer		96.8			
Sieve Size #60 - Percent Finer		94.9			
Sieve Size #80 - Percent Finer		88.7			
Sieve Size #100 - Percent Finer		86.1			
Sieve Size #200 - Percent Finer		74.4			
Hydrometer Reading 1 - Percent Finer		49.6			
Hydrometer Reading 2 - Percent Finer		39.5			
Hydrometer Reading 3 - Percent Finer		30.4			
Hydrometer Reading 4 - Percent Finer		26.4			
Hydrometer Reading 5 - Percent Finer		21.4			

13.3

8.2

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-056

Lab Sample ID:

200-4493-2

Client Matrix:

Solid

Date Sampled: 03/29/2011 1150

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

N/A 1.0

Prep Batch:

N/A

Lab File ID:

200-4493-A-2.txl

Dilution:

Initial Weight/Volume:

113.72 g

Analysis Date:

04/04/2011 2030

Prep Date:

N/A

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		1.0	C. 1		to the second se
Sand		24.6			
Coarse Sand		1.0			
Medium Sand		1.2			
Fine Sand		22.4			
Silt		53.0			
Clay		21.4			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-057

Lab Sample ID:

200-4493-3

Client Matrix:

Solid

Date Sampled: 03/29/2011 1400 Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

Dilution:

N/A

Prep Batch:

Lab File ID:

200-4493-A-3.txt

1.0

N/A

Initial Weight/Volume:

Analysis Date:

04/04/2011 2033

102 g

Prep Date:

N/A

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent F	 	100.0	Land the second and se	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Sieve Size 2 inch - Percent f		100.0			
Sieve Size 1.5 inch - Percen		100.0			
Sieve Size 1 inch - Percent F		100.0			
Sieve Size 0.75 inch - Perce		100.0			
Sieve Size 0.375 inch - Perc	ent Finer	100.0			
Sieve Size #4 - Percent Fine	r	100.0			
Sieve Size #10 - Percent Fin	er	99.7			
Sieve Size #20 - Percent Fin	er	99.6			
Sieve Size #40 - Percent Fin	ег	98.6			
Sieve Size #60 - Percent Fin	ег	95.7			
Sieve Size #80 - Percent Fin	er	87.5			
Sieve Size #100 - Percent Fi	iner	83.7			
Sieve Size #200 - Percent Fi	ner	67.1			
Hydrometer Reading 1 - Per	cent Finer	39.0			
Hydrometer Reading 2 - Per	cent Finer	32.3			
Hydrometer Reading 3 - Per	cent Finer	23.4			
Hydrometer Reading 4 - Per	cent Finer	19,0			
Hydrometer Reading 5 - Per	cent Finer	14.6			
Hydrometer Reading 6 - Per	cent Finer	10,2			
Hydrometer Reading 7 - Per	cent Finer	6.8			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-057

Lab Sample ID:

200-4493-3

Client Matrix:

Solid

Date Sampled: 03/29/2011 1400

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

Dilution:

N/A

Prep Batch:

N/A

Lab File ID:

200-4493-A-3.txt

Analysis Date:

1.0

04/04/2011 2033

Prep Date:

N/A

Initial Weight/Volume:

102 g

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0		NAMES OF THE PROPERTY OF THE P	
Sand		32.9			
Coarse Sand		0.3			
Medium Sand		1.1			
Fine Sand		31.5			
Silt		52.5			
Clay		14.6			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-058

Lab Sample ID:

200-4493-4

Client Matrix:

Solid

Date Sampled: 03/29/2011 1525 Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch: Prep Batch:

200-16139 N/A

Instrument ID:

D422_import

N/A

1.0

Hydrometer Reading 7 - Percent Finer

04/04/2011 2036

Analysis Date: Prep Date:

Dilution:

N/A

Lab Fife ID: Initial Weight/Volume: 200-4493-A-4.txt

140.64 g

Final Weight/Volume:

Analyte I	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent Fine	Γ	100.0			
Sieve Size 2 inch - Percent Fine	Г	100.0			
Sieve Size 1.5 inch - Percent Fir	ner	100.0			
Sieve Size 1 inch - Percent Fine	Г	100.0			
Sieve Size 0.75 inch - Percent F	iner	100.0			
Sieve Size 0.375 inch - Percent	Finer	100.0			
Sieve Size #4 - Percent Finer		100.0			
Sieve Size #10 - Percent Finer		99.5			
Sieve Size #20 - Percent Finer		99.2			
Sieve Size #40 - Percent Finer		97.8			
Sieve Size #60 - Percent Finer		92.1			
Sieve Size #80 - Percent Finer		82.9			
Sieve Size #100 - Percent Finer		78.2			
Sieve Size #200 - Percent Finer		61.0			
Hydrometer Reading 1 - Percent	t Finer	31.0			
Hydrometer Reading 2 - Percent	t Finer	24.1			
Hydrometer Reading 3 - Percent	t Finer	17.9			
Hydrometer Reading 4 - Percent	t Finer	14.0			
Hydrometer Reading 5 - Percent Finer		10.9			
Hydrometer Reading 6 - Percent	t Finer	7.1			

4.0

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-058

Lab Sample ID:

200-4493-4

Client Matrix:

Solid

Date Sampled: 03/29/2011 1525

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

N/A 1.0

Prep Batch:

Lab File ID:

200-4493-A-4.txt

Dilution:

N/A

Initial Weight/Volume:

140.64 g

Analysis Date:

04/04/2011 2036

Final Weight/Volume:

Prep Date:

DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
	0.0	······································		samma uummaka sahika maka sama sama sahi musa mensuah sahisus ahisa 2000 sambi sahib 2014.
	39.0			
	0.5			
	1.7			
	36.8			
	50.1			
	10.9			
		0.0 39.0 0.5 1.7 36.8 50.1	0.0 39.0 0.5 1.7 36.8 50.1	0.0 39.0 0.5 1.7 36.8 50.1

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4492-1

Sdg Number: AIC300593

Client Sample ID:

FPS10-053

Lab Sample ID:

200-4492-1

Client Matrix:

Solid

Date Sampled: 03/28/2011 1505 Date Received: 04/01/2011 1104

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16138

Instrument ID:

D422_import

N/A

1.0

Prep Batch:

Lab File ID:

200-4492-A-1,txt

Dilution:

N/A

Initial Weight/Volume:

135.25 g

Analysis Date: Prep Date:

04/04/2011 2024

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent Finer		100.0	AC THE TOTAL PARTY IN THE STATE OF THE STATE	V	
Sieve Size 2 inch - Percent Fin	ner	100.0			
Sieve Size 1.5 inch - Percent I	Finer	100.0			
Sieve Size 1 inch - Percent Fin	ner	100.0			
Sieve Size 0.75 inch - Percent	Finer	100.0			
Sieve Size 0.375 inch - Percei	nt Finer	100.0			
Sieve Size #4 - Percent Finer		100.0			
Sieve Size #10 - Percent Fine	r	99.5			
Sieve Size #20 - Percent Fine	r	99.3			
Sieve Size #40 - Percent Fine	r	97.5			
Sieve Size #60 - Percent Fine	٢	95.9			
Sieve Size #80 - Percent Fine	г	92.8			
Sieve Size #100 - Percent Fin	er	91.5			
Sieve Size #200 - Percent Fin	er	83.9			
Hydrometer Reading 1 - Perce	ent Finer	43.6			
Hydrometer Reading 2 - Perce	ent Finer	34.8			
Hydrometer Reading 3 - Perce	ent Finer	24.1			
Hydrometer Reading 4 - Perce	ent Finer	18.8			
Hydrometer Reading 5 - Perce	ent Finer	13.5			
Hydrometer Reading 6 - Perce	ent Finer	8.1			
Hydrometer Reading 7 - Perce	ent Finer	3.7			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4492-1

Sdg Number: AIC300593

Client Sample ID:

FPS10-053

Lab Sample ID:

200-4492-1

Client Matrix:

Solid

Date Sampled: 03/28/2011 1505 Date Received: 04/01/2011 1104

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16138

Instrument ID:

D422_import

N/A

1.0

Prep Batch:

Lab File ID:

200-4492-A-1.txt

Dilution:

N/A

Initial Weight/Volume:

135.25 g

Analysis Date:

04/04/2011 2024

Final Weight/Volume:

Prep Date:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			· · · · · · · · · · · · · · · · · · ·
Sand		16.1			
Coarse Sand		0.5			
Medium Sand		2.0			
Fine Sand		13.6			
Silt		70.4			
Clay		13.5			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-054

Lab Sample ID:

200-4493-1

Client Matrix:

Solid

Date Sampled: 03/29/2011 0945 Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

N/A

Prep Batch:

N/A

Lab File ID:

200-4493-A-1.txt

Dilution:

1.0

Initial Weight/Volume:

148.26 g

Analysis Date:

04/04/2011 2028

Final Weight/Volume:

Prep Date:

N/A

Qualifier

NONE

NONE

Analyte DryWt Corrected: N Result (%) (0.0) (39.1) Gravel Sand 0.3 Coarse Sand Medium Sand 4.1 Fine Sand 34.7 Silt 51.1 6.00 Clay 9.8

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-056

Lab Sample ID:

200-4493-2

Client Matrix:

Solid

Date Sampled: 03/29/2011 1150

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

N/A Dilution:

1.0

Prep Batch: N/A Lab File ID:

200-4493-A-2.txt

Initial Weight/Volume:

113.72 g

Analysis Date:

04/04/2011 2030

Final Weight/Volume:

Prep Date:

N/A

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel	rten – 1 d. n. i. metari in 1 man diliki n. m. iki n. m. iki 1 limbar 1 li 1 n. n. 1 d. d. n. n. n. diliki dana mempunya mempunya menganya	1.0	, , , , , , , , , , , , , , , , , , , ,		
Sand		24.6			
Coarse Sand		1.0			
Medium Sand		1.2			
Fine Sand		22.4			
Silt		53.0 74.4			
Clay		21.4			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-057

Lab Sample ID:

200-4493-3

Client Matrix:

Solid

Date Sampled: 03/29/2011 1400

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16139

Instrument ID:

D422_import

N/A

Prep Batch:

Lab File ID:

200-4493-A-3.txt

Difution:

1.0

N/A

Initial Weight/Volume:

102 g

Analysis Date:

04/04/2011 2033

Final Weight/Volume:

Prep Date:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			
Sand		32.9			
Coarse Sand		0.3			
Medium Sand		1.1			
Fine Sand		31.5			
Silt		52.5 (g ^{-/} \			
Clay		14.6			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4493-1

Sdg Number: A13C00562

Client Sample ID:

FPS10-058

Lab Sample ID:

200-4493-4

Client Matrix:

Solid

Date Sampled: 03/29/2011 1525

Date Received: 04/01/2011 1010

D422 Grain Size

Analysis Method:

D422 N/A

Analysis Batch:

200-16139

Instrument ID:

D422_import

1.0

Prep Batch:

Lab File ID:

200-4493-A-4.txt

Dilution:

N/A

Initial Weight/Volume:

140.64 g

Analysis Date:

04/04/2011 2036

Prep Date:

N/A

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0	PRINCES OF THE STATE OF THE PERSON OF THE STATE OF THE PERSON OF THE STATE OF THE S	CALLELLA II IV. ALIVOSPOVETES VIES	THE ST. LEADING WITH WITH WITH THE STREET STREET, STORE VIEW S. A. WILLIAM
Sand		39.0			
Coarse Sand		0.5			
Medium Sand		1.7			
Fine Sand		36.8	_		
Silt		50.1 61.	3		
Clay		10.9			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4492-1

Sdg Number: AIC300593

Client Sample ID:

FPS10-053

Lab Sample ID:

200-4492-1

Client Matrix:

Solid

Date Sampled: 03/28/2011 1505

Date Received: 04/01/2011 1104

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16138

Instrument ID:

D422_import

N/A

Prep Batch:

N/A

Lab File ID:

200-4492-A-1.txt

Dilution:

1.0

Initial Weight/Volume:

135.25 g

Analysis Date:

04/04/2011 2024

Prep Date:

N/A

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		0.0			
Sand		16.1			
Coarse Sand		0.5			
Medium Sand		2.0			
Fine Sand		13.6			
Silt		70.4 VB			
Clay		13.5			

Client: TestAmerica Laboratories, Inc.

Job Number: 200-4528-1

Sdg Number: A1C310607

Client Sample ID:

FPS10-066

Lab Sample ID:

200-4528-1

Client Matrix:

Solid

Date Sampled: 03/31/2011 1125

Date Received: 04/02/2011 0930

D422 Grain Size

Analysis Method:

D422

Analysis Batch:

200-16270

Instrument ID:

D422_import

N/A

Prep Batch:

N/A

Lab File ID:

200-4528-A-1,txt

Dilution:

1.0

Initial Weight/Volume:

133.97 g

Analysis Date:

04/05/2011 2135

Prep Date:

N/A

Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)		Qualifier	NONE	NONE
Gravel	- The state of the	0.0	THE ALABAM AMARIA WAS THE COMPANYING BALLS	CC 10.02.02.000000000000000000000000000000		
Sand		36.5				
Coarse Sand		1.0				
Medium Sand		7.2				
Fine Sand		28.3	6			
Silt		50.0	63 ⁵⁹			
Clay		13.5	w >			

Sample: Date Received:	130669 04/27/2011 17:18 Begin:	Test: OEPA 590. Matrix SFF End:		Collecte	d by:	8080_0823-060111 OTHERS OTHER
Date Collected:	-	09/13/2010 14:25		Statio		
Program:	NEDO-DERR		(Custome	эг ID:	
Client:	NEASE_MFLBC			Externa	al ID:	
Location:	FT10-12.5-WS-F					
				Begin		End
Aliquot:	130669-FSHC-2		Prep Date:	05/20/2	011	05/23/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	58.2	29.8	3	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	66	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments		-			-	
Approved By		On				

Sample:	130670	Test: OEPA 590).1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF		Collecte	d by:	OTHERS
	Begin:	End:	9	Sample ⁻	Гуре:	OTHER
Date Collected:		09/13/2010 14:25		Statio	n ID:	
Program:	NEDO-DERR			Custome	er ID:	
Client:	NEASE_MFLBC			Externa	al ID:	
Location:	FT10-12.5-WS-0					
				Begin	_	End
Aliquot:	130670-FSHC-2		Prep Date:	05/24/2	011	05/26/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	189	99.6	10	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	59	38.8	110.4	1	
r:	No.					
Field Comments	Mirex requested					
Lab Comments		·				
QC / Sample Comments		·				
Approved By		On				

130671	Test: OEPA 590	.1	В	atch:	8080_0823-060111
04/27/2011 17:18	Matrix SFF	•	Collecte	d by:	OTHERS
Begin:	End:	9	Sample [:]	Type:	OTHER
	09/13/2010 14:25		Statio	n ID:	
NEDO-DERR			Custome	er ID:	
NEASE_MFLBC			Extern	al ID:	
FT10-12.5-CC-F					
			Begin		End
130671-FSHC-2		Prep Date:	05/20/2	011	05/23/2011
JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011
<u>. </u>	CAS Number	Result	RL	Dil	Qualifier
	002385-85-5	121	49.7	5	
	% Recovery	Lower	Upper	Dil	Qualifier
-Hexabromobiphenyl	80	38.8	110.4	1	
Mirex requested	 -				· · · ·
L	On				
	04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-12.5-CC-F 130671-FSHC-2 JNAIYER Hexabromobiphenyl	04/27/2011 17:18 Begin: 09/13/2010 14:25 NEDO-DERR NEASE_MFLBC FT10-12.5-CC-F 130671-FSHC-2 JNAIYER Units: ug/kg CAS Number 002385-85-5 % Recovery Hexabromobiphenyl Mirex requested	04/27/2011 17:18 Matrix SFF Begin: End: 09/13/2010 14:25 NEDO-DERR 09/13/2010 14:25 NEASE_MFLBC FT10-12.5-CC-F Prep Date: 130671-FSHC-2 Prep Date: JNAIYER Units: ug/kg Analysis Date: CAS Number 002385-85-5 121 % Recovery Lower Lower Hexabromobiphenyl 80 38.8 Mirex requested	04/27/2011 17:18 Matrix SFF Collected Begin: End: 99/13/2010 14:25 Station NEDO-DERR Custome Externs NEASE_MFLBC Externs Externs FT10-12.5-CC-F Frep Date: 05/20/2 JNAIYER Units: ug/kg Analysis Date: 05/25/2 CAS Number Result RL 49.7 We Recovery Lower Upper -Hexabromobiphenyl 80 38.8 110.4 Mirex requested	Matrix SFF Collected by: Begin:

130672	Test: OEPA 590).1	В	atch:	8080_0823-060111
04/27/2011 17:18	Matrix SFF		Collecte	d by:	OTHERS
Begin:	End:	\$	Sample `	Гуре:	OTHER
	09/13/2010 14:25		Statio	n ID:	
NEDO-DERR		•	Custome	er ID:	
NEASE_MFLBC			Externa	al ID;	
FT10-12.5-CC-O					
			Begin		End
130672-FSHC-2		Prep Date:	05/23/2	011	05/25/2011
JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011
<u></u>	CAS Number	Result	RL	Dil	Qualifier
	002385-85-5	444	193	20	
	% Recovery	Lower	Upper	Dil	Qualifier
Hexabromobiphenyl	52	38.8	110.4	1	
Mirex requested	 _				
5 Fish					
	On				
	04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-12.5-CC-O 130672-FSHC-2 JNAIYER Hexabromobiphenyl Mirex requested	04/27/2011 17:18 Begin: End:	04/27/2011 17:18 Matrix SFF Begin: End: \$ 09/13/2010 14:25 09/13/2010 14:25 NEDO-DERR NEASE_MFLBC FT10-12.5-CC-O Prep Date: 130672-FSHC-2 Prep Date: JNAIYER Units: ug/kg Analysis Date: CAS Number 002385-85-5 Result Was Recovery Lower Hexabromobiphenyl 52 38.8 Mirex requested	04/27/2011 17:18 Matrix SFF Collected Begin: End: Sample 09/13/2010 14:25 Station NEDO-DERR Custome NEASE_MFLBC Externation FT10-12.5-CC-O Frep Date: 05/23/2 JNAIYER Units: ug/kg Analysis Date: 05/25/2 CAS Number Result RL 193 Was Recovery Lower Upper Hexabromobiphenyl 52 38.8 110.4 Mirex requested 5 Fish	NEDO-DERR Sample Type: 09/13/2010 14:25 Station ID: 09/13/2010 14:25 External ID: 05/25/2010

		o Duta Report				
Date Collected: Program:	04/27/2011 17:18 Begin: NEDO-DERR	Test: OEPA 590 Matrix SFF End: 09/13/2010 18:00	Š	Collecte Sample Statio	d by: Type: n ID: er ID:	
	NEASE_MFLBC FT10-32.0-YB-F			Externa	al ID:	
Aliquot: Analyst:	130673-FSHC-2 JNAIYER	Units: ug/kg	Prep Date: Analysis Date:			End 05/23/2011 05/27/2011
Analytes Mirex	···	CAS Number 002385-85-5	Result 324	RL 99.8	Dil 10	Qualifier
Surrogate 2,2',4,4',5,5'-	-Hexabromobiphenyl	% Recovery 85	Lower 38.8	Upper 110.4	Dil 1	Qualifier
Field Comments	Mirex requested				_	
ab Comments	jar					
QC / Sample Comments						
Approved By	,,	On				Travia de

		<u> </u>				· · · · · · · · · · · · · · · · · · ·
Sample:	130674	Test: OEPA 590	.1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF		Collecte	d by:	OTHERS
	Begin:	End:	\$	Sample `	Type:	OTHER
Date Collected:		09/13/2010 18:00		Statio	n ID:	
Program:	NEDO-DERR		(Custome	er ID:	
	NEASE_MFLBC			Extern	al ID:	
Location:	FT10-32.0-YB-O					
			- :: -	Begin		End
Aliquot:	130674-FSHC-2		Prep Date:	05/20/2	2011	05/23/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	2011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	1650	497	50	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'-	Hexabromobiphenyl	79	38.8	110.4	1	
ield Comments	Mirex requested					
ab Comments	jar					· ·
C / Sample omments						
pproved By		On	1			

Date Collected: Program:	04/27/2011 17:18 Begin: NEDO-DERR	Test: OEPA 590 Matrix SFF End: 09/13/2010 18:00		Collecte Sample 1 Statio Custome	d by: Type: n ID: :r ID:	
1	NEASE_MFLBC FT10-32.0-WS-F			Externa	al ID:	
Aliquot: Analyst:	130675-FSHC-2 \ 1 JNAIYER	Units: ug/kg	Prep Date: Analysis Date:			• •
Analytes Mirex		CAS Number 002385-85-5	Result 286	RL 99.4	Dil 10	Qualifier
Surrogate	-Hexabromobiphenyl	% Recovery	Lower 38.8	Upper 110.4	Dil 1	Qualifier
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments	Sample used as MSD. To amount of spike used,	here is too much mirex in t	he sample to obta	ain an ac	ceptal	ole recovery with the
Approved By		On				

Date Collected: Program: Client:	130676 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-32.0-WS-O	Test: OEPA 590. Matrix SFF End: 09/13/2010 18:00	S	Collecte	d by: Type: n ID: er ID;	8080_0823-060111 OTHERS OTHER
		•		Begin		End
	130676-FSHC-2	-	Prep Date:			05/23/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	2011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	1470	499	50	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	48	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments						
Approved By		On				

Sample:	130677	Test: OEPA 590	.1	R	atch	8080_0823-060111
_	04/27/2011 17:18	Matrix SFF				OTHERS
	Begin:	End:				OTHER
Date Collected:	•	09/13/2010 18:00		Statio		
Program:	NEDO-DERR	, ,	(Custome	er ID;	
Client:	NEASE_MFLBC			Extern	al ID:	
Location:	FГ10-32.0-СС-F					
				Begin		End
Aliquot:	130677-FSHC-2		Prep Date:	05/23/2	2011	05/25/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	2011	05/27/2011
Analytes	· ·	CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	516	194	20	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'-	Hexabromobiphenyl	62	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments				·		
Approved By		On				

Date Collected: Program: Client:	130678 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-32.0-CC-O	Test: OEPA 590 Matrix SFF End: 09/13/2010 18:00	 \$	Collecte	ed by: Type: on ID: er ID:	
Aliquot: Analyst:	130678-FSHC-2 JNAIYER	Units: ug/kg	Prep Date: Analysis Date:			End 05/26/2011 05/27/2011
Analytes Mirex		CAS Number 002385-85-5	Result 1300	RL 498	Dil 50	Qualifier
Surrogate 2,2',4,4',5,5'	-Hexabromobiphenyl	% Recovery 53	Lower 38.8	Upper 110.4	Dil 1	Qualifier
Field Comments	Mirex requested					
Lab Comments	2 fish					
QC / Sample Comments				······································		
Approved By		On				

						
Sample:	130680	Test: OEPA 590	.1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF	•	Collecte	d by:	OTHERS
	Begin:	End:	5	iample '	Type:	OTHER
Date Collected:		09/14/2010 09:15		Statio	n ID:	
Program:	NEDO-DERR			Custome	er ID;	
Client:	NEASE_MFLBC			Extern	al ID:	
Location:	FT10-33.3-WS-O					
·				Begin		End
Aliquot:	130680-FSHC-2		Prep Date:	05/23/2	2011	05/25/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	2011	05/27/2011
Analytes	-	CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	1020	484	50	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	55	38.8	110.4	_1	
ield Comments	Mirex requested					
ab Comments						
QC / Sample Comments						-
Approved By	PROPERTY OF STREET	On				- 19141

	<u>.</u>					
Sample:	130681	Test: OEPA 590	.1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF	1	Collecte	d by:	OTHERS
	Begin:	End:	9	Sample '	Гуре:	OTHER
Date Collected:		09/14/2010 09:15		Statio	n ID:	
Program:	NEDO-DERR		(Custome	er ID:	
Client:	NEASE_MFLBC			Externa	al ID:	
Location:	FT10-33.3-WS-F					
				Begin		End
Aliquot:	130681-FSHC-2		Prep Date:	05/23/2	011	05/25/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex	<u> </u>	002385-85-5	130	49.2	5	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	59	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments		<u> </u>				
QC / Sample Comments				<u> 1</u>	•	
Approved By		On				

		<u>F</u>						
Sample:		Test: OEPA 590				8080_0823-060111		
Date Received:	04/27/2011 17:18	Matrix SFF	•	Collecte	d by:	OTHERS		
	Begin:	End:		iample '	Гуре:	ÖTHER		
Date Collected:		09/14/2010 09:15		Statio	n ID:			
Program:	NEDO-DERR		Customer ID;					
Client:	NEASE_MFLBC			Extern	al ID:			
Location:	FT10-33.3-CC-F							
				Begin	_	End		
Aliquot:	130682-FSHC-2		Prep Date:	05/23/2	011	05/25/2011		
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011		
Analytes		CAS Number	Result	RL	Dil	Qualifier		
Mirex		002385-85-5	1220	498	50			
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier		
2,2',4,4',5,5'	-Hexabromobiphenyl	65	38.8	110.4	1			
Field Comments	Mirex requested							
Lab Comments	jar							
QC / Sample Comments								
Approved By		On _						

Sample: Date Received:	130683 04/27/2011 17:18 Begin:	Test: OEPA 590 Matrix SFF End:		Collecte	d by:	8080_0823-060111 OTHERS OTHER
Date Collected:	_	09/14/2010 12:00		Statio	n ID:	
Program:	NEDO-DERR			Custome	er ID:	
Client:	NEASE MFLBC			Externa	al ID:	
Location:	FT10-35.4-WS-F					
	· · · · · ·			Begin		End
Aliquot:	130683-FSHC-2 \ 1		Prep Date:	05/24/2	2011	05/26/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	2011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	151	99.7	10	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	45	38.8	110.4	1	
Field Comments	Mirex requested		<u> </u>			
Lab Comments		·				
QC / Sample Comments						
Approved By		On				

Sample: 130684 **Test:** OEPA 590.1 Batch: 8080_0823-060111 **Matrix** SFF Collected by: OTHERS Date Received: 04/27/2011 17:18 Sample Type: OTHER Begin: End: Date Collected: 09/14/2010 12:00 Station ID: Program: NEDO-DERR **Customer ID:** Client: NEASE_MFLBC External ID: Location: FT10-35.4- YB F Begin End Aliquot: 130684-FSHC-2 Prep Date: 05/23/2011 05/25/2011 Analyst: JNAIYER Units: ug/kg **Analysis Date:** 05/25/2011 05/27/2011 **Analytes CAS Number** Result RL Dil Qualifier Mirex 002385-85-5 200 99.5 10 Surrogate Dil Qualifier % Recovery Lower Upper 2,2',4,4',5,5'-Hexabromobiphenyl 38.8 110.4 55 **Field Comments** Mirex requested **Lab Comments** QC / Sample Comments **Approved By** On

eived: ected: gram:	130685 04/27/2011 17:18 Begin:	Matrix End:	OEPA 590 SFF		Collecte		8080_0823-060111 OTHERS
ected: gram:	Begin:	End:	SFF			d by:	OTHERS
gram:	_				_		
gram:	NEDO OFFI	09/14/20		•	Sample '	Гуре:	OTHER
-	NEDO OFFID	, - 1, LO.	LO 12:00		Statio	n ID:	
-	NEDO-DERR			•	Custome	r ID:	
lient:	NEASE_MFLBC				Externa	al ID:	
ation:	FT10-35.4-YB-O						
			·		Begin		End
iquot:	130685-FSHC-2			Prep Date:	05/24/2	011	05/26/2011
alyst:	JNAIYER	Units: ug/	kg	Analysis Date:	05/25/2	011	05/27/2011
ytes	_	CAS Nu	mber	Result	RL	Dil	Qualifier
		002385-	85-5	1270	499	50	
ogate		% Rec	overy	Lower	Upper	Dil	Qualifier
,4',5,5'-	Hexabromobiphenyl	41		38.8	110.4	1	
ents	Mirex requested						
nts							
e							
y		On					
	ogate ,4',5,5' ents	pgate ,4',5,5'-Hexabromobiphenyl ents Mirex requested nts	alyst: JNAIYER Units: ug/ ytes CAS Nu 002385- ogate % Reco ,4',5,5'-Hexabromobiphenyl 41 ents Mirex requested nts	alyst: JNAIYER Units: ug/kg /tes CAS Number 002385-85-5 Ogate % Recovery /4',5,5'-Hexabromobiphenyl 41 ents Mirex requested nts	alyst: JNAIYER CAS Number Result 002385-85-5 1270 Degate A',5,5'-Hexabromobiphenyl Mirex requested Mirex requested CAS Number Result 002385-85-5 1270 Recovery Lower 41 38.8	Quot: 130685-FSHC-2	Quot: 130685-FSHC-2

		<u>_</u>				
Sample:	130687	Test: OEPA 590	1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF		Collecte	d by:	OTHERS
	Begin:	End:	5	Sample '	Туре:	OTHER
Date Collected:		09/14/2010 15:30		Statio	n ID:	
Program:	NEDO-DERR			Custome	er ID;	
Client:	NEASE_MFLBC			Extern	al ID:	
Location:	FT10-36.7 WS-O-					
	<u> </u>			Begin		End
Aliquot:	130687-FSHC-2		Prep Date:	05/23/2	2011	05/25/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	nalysis Date: 05/25/2011		05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	1420	489	50	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	Hexabromobiphenyl	79	38.8	110.4	1	
field Comments	Mirex requested					
ab Comments	jar					
C / Sample Comments		- 	······································			
Approved By		On				

		 				
Sample:	130688	Test: OEPA 590	.1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF		Collecte	d by:	OTHERS
	Begin:	End:	5	-		OTHER
Date Collected:		09/14/2010 15:30		Statio	n ID:	
Program:	NEDO-DERR		(Customo	ег ID:	
	NEASE_MFLBC			Extern	al ID:	
Location:	FT10-36.7 WS-F					
				Begin		End
Aliquot:	130688-FSHC-2		Prep Date:	05/23/2	2011	05/25/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2011		05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	194	96.4	10	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5 <u>,5</u> '	-Hexabromobiphenyl	56	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments	jar	- Padd a 11889 (1900) and dame to 1 to add date amount ones bands (a W 1189).				
QC / Sample Comments			-			
Approved By		On				

Client:		Test: OEPA 590 Matrix SFF End: 09/14/2010 17:00			d by:	8080_0823-060111 OTHERS
Date Collected: Program: Client:	Begin:	End:			-	
Program: Client:	_		S	iample i	Tyne:	OTUED
Program: Client:	NEDO-DERR	09/14/2010 17:00			,) bei	UITEK
Client:	NEDO-DERR			Statio	n ID:	
				Custome	г ID:	
Location:	NEASE_MFLBC			Externa	d ID:	
	FT10-37.5 WS-O					
				Begin		End
Aliquot:	130689-FSHC-2		Prep Date:	05/24/2	011	05/26/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	341	200	20	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'-	Hexabromobiphenyl	56	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments					<u> </u>	
QC / Sample Comments						
Approved By		On				

Sample:	130690	Test: OEPA 590	.1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF	(Collecte	d by:	OTHERS
	Begin:	End:	5	Sample 1	Гуре:	OTHER
Date Collected:		09/14/2010 08:30		Statio	n ID;	
Program:	NEDO-DERR					
Client:	NEASE_MFLBC			Externa	al ID:	
Location:	FT10-38.4 WS-F					
	 			Begin		End
Aliquot:	130690-FSHC-2		Prep Date: 05/20/2011			05/23/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	nalysis Date: 05/25/2011		05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	<9.9	9.9	1	
Fi-14 C	National value of					
Field Comments	Mirex requested					
Lab Comments		•				
QC / Sample Comments						
Approved By			<u> </u>			

Date Collected: Program: Client:	130691 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-38.4 WS-0	Test: OEPA 590 Matrix SFF End: 09/14/2010 08:30		Collecte	d by: Type: n ID: er ID:	8080_0823-060111 OTHERS OTHER
Aliquot:	130691-FSHC-2		Prep Date:	Begin 05/24/2	011	End 05/26/2011
Analyst:		Units: ug/kg	Analysis Date:			05/27/2011
Analytes Mirex		CAS Number 002385-85-5	Result	RL 9,9	Dil 1	Qualifier
Surrogate	-Hexabromobiphenyl	% Recovery	Lower 38.8	Upper 110.4	Dil 1	Qualifier
Field Comments	Mirex requested					
Lab Comments		<u></u>				
QC / Sample Comments						
Approved By		On				

	Sample Analysi	s Data Keport				
Sample:	130692	Test: OEPA 590	.1	В	atch:	8080_0823-06011
Date Received:	04/27/2011 17:18	Matrix SFF	Collected by:		OTHERS	
	Begin:	End:	Sample Type:			OTHER
Date Collected:		09/14/2010 12:00	Station ID:			
Program:	NEDO-DERR			Custome	r ID:	
Client:	NEASE_MFLBC			Externa	al ID:	
Location:	FT10-35.4 WS-O					
				Begin		End
Aliquot:	130692-FSHC-2		Prep Date:	05/24/2	011	05/26/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date: 05/25/2011		05/27/2011	
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	889	4 97	50	
Surrogate		% Recovery	Lower	Upper	Dij	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	50	38.8	110.4	1	
ield Comments	Mirex requested					
ab Comments				-	-	
C / Sample comments						
pproved By		On				

Sample:	130693	Test: OEPA 590	.1	В	atch:	8080_0823-060111
Date Received:	04/27/2011 17:18	Matrix SFF		Collecte	d by:	OTHERS
	Begin:	End:	9	Sample '	Түре:	OTHER
Date Collected:		09/14/2010 17:00		Statio	n ID:	
Program:	NEDO-DERR		(Customo	er ID:	
Client:	NEASE_MFLBC			Extern	al ID:	
Location:	FT10-37.5 WS-F					
·				Begin		End
Aliquot:	130693-FSHC-2 \ 1		Prep Date:	05/23/2	2011	05/25/2011
Analyst:	JNAIYER	Units: ug/kg	Analysis Date:	05/25/2	2011	05/27/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	58.1	19.6	2	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	50	38.8	110.4	1	
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments						
Approved By		On				

	Sumple Analysis	Data Itopo	••				
Date Collected: Program: Client:	130694 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-33.3-CC-O L7NX-6	Test: Matrix End: 09/14/20		- \$	Collecte	Type: n ID: er ID:	OTHERS OTHER
	· · · · · · · · · · · · · · · · · · ·				Begin		End
Aliquot:	130694-FSHC-2			Prep Date:	05/24/2	011	05/26/2011
Analyst:	JNAIYER	Units: ug/	kg	Analysis Date:	05/25/2	011	05/27/2011
Analytes		CAS Nu	ımber	Result	RL	Dil	Qualifier
Mirex		002385	85-5	3380	991	100	
Surrogate		% Rec	overy	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	-Hexabromobiphenyl	68		38.8	110.4	1	
ield Comments	Mirex requested	_					
ab Comments	L7NX6 008,004,005,006 c	omposite 4 ja	rs				
2C / Sample Comments							

On

Qualifier: * Outside acceptance limits

Approved By

Sample: Date Received:	130686 04/27/2011 17:18 Begin:	Test: OEPA 590.1 Matrix SFF End:		Collecte	d by:	8080_0824-060711 OTHERS OTHER
Date Collected:		09/14/2010 15:30		Statio	n ID:	
Program:	NEDO-DERR		(Custome	r ID:	
Client:	NEASE_MFLBC			Externa	il ID:	•
Location:	FT10-36.7 YB-O					
	·			Begin		End
Aliquot:	130686-FSHC-2		Prep Date:	06/02/2	011	06/06/2011
Analyst:	JNAIYER	Units: ug/kg A	Analysis Date:	06/06/2	011	06/06/2011
Analytes		CAS Number	Result	RL	Dil	Qualifier
Mirex		002385-85-5	744	249	25	
Surrogate		% Recovery	Lower	Upper	Dil	Qualifier
2,2',4,4',5,5'	Hexabromobiphenyl	42	38.8	110.4	1	
Field Comments	Mirex requested	 .				
Lab Comments						
QC / Sample Comments		20.00				
Approved By	SROBERTS	On 06/0	08/2011			

Sample:	130669	Te	st: OEPA 58:	1.5	Batch:	ORGLIP_0533-052411
Date Received:	04/27/2011 17:18	Mat	trix SFF		Collected by:	OTHERS
	Begin:	End:		5	Sample Type:	OTHER
Date Collected:		09/13	3/2010 14:25		Station ID:	
Program:	NEDO-DERR			(Customer ID:	
Client:	NEASE_MFLBC				External ID:	
Location:	FT10-12.5-WS-F					
					Begin	End
Aliquot:	130669-FSHC-1	Dilution:	1	Prep Date:	05/21/2011	05/21/2011
Analyst:	JALEXANDER	Units:	%	Analysis Date:	05/21/2011	05/21/2011
Analytes		CAS	S Number	Result	RL	Qualifier
%Lipids		N/A		0.437		
						
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments						
Approved By	SROBERTS	On	06	5/01/2011	·	

Date Collected: Program: Client:	130671 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-12.5-CC-F	Test: OEPA 581 Matrix SFF End: 09/13/2010 14:25	 \$	Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	
•	130671-FSHC-1 JALEXANDER	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/21/2011 05/21/2011	End 05/21/2011 05/21/2011
Analytes %Lipids		CAS Number N/A	Result 3.31	RL	Qualifier
Field Comments	Mirex requested				
Lab Comments					
QC / Sample Comments					
Annroved Rv	SPORERTS		/01/2011		

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Test: OEI Matrix SFF End: 09/13/2010 1:	s 8:00	Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	
	; <u></u>	···		Begin	End
Aliquot:	130673-F\$HC-1	Dilution: 1	Prep Date:	05/21/2011	05/21/2011
Analyst:	JALEXANDER	Units: %	Analysis Date:	05/21/2011	05/21/2011
Analytes		CAS Numbe	er Result	RL	Qualifier
%Lipids		N/A	1.23		
Field Comments	Mirex requested		_		.
Lab Comments	jar				
QC / Sample Comments					
Approved By	SROBERTS		06/01/2011		 :-

Sample:	130674	Test: OEPA 58	31.5	Batch:	ORGLIP_0533-052411
Date Received:	04/27/2011 17:18	Matrix SFF	•	Collected by:	
	Begin:	End:	S	ample Type:	OTHER
Date Collected:		09/13/2010 18:00		Station ID:	
Program:	NEDO-DERR			Customer ID:	
Client:	NEASE_MFLBC			External ID:	
Location:	FT10-32.0-YB-O				
				Begin	End
Aliquot:	130674-FSHC-1	Dilution: 1	Prep Date:	05/21/2011	05/21/2011
Analyst:	JALEXANDER	Units: %	Analysis Date:	05/21/2011	05/21/2011
Analytes		CAS Number	Result	RL	Qualifier
%Lipids	 	N/A	5.58		
	No.		- 		
Field Comments	Mirex requested				
Lab Comments	jar				
QC / Sample Comments					
Approved By	SROBERTS		06/01/2011		<u> </u>

Sample: 130675 **Test:** OEPA 581.5 Batch: ORGLIP_0533-052411 Matrix SFF Collected by: OTHERS Date Received: 04/27/2011 17:18 Sample Type: OTHER Begin: End: Date Collected: 09/13/2010 18:00 Station ID: Program: NEDO-DERR **Customer ID:** Client: NEASE_MFLBC **External ID:** Location: FT10-32.0-WS-F Begin End Aliquot: 130675-FSHC-1 Dilution: 1 **Prep Date:** 05/21/2011 05/21/2011 Analyst: JALEXANDER Units: % **Analysis Date:** 05/21/2011 05/21/2011 **Analytes CAS Number** Result Qualifier 0.785 %Lipids N/A **Field Comments** Mirex requested **Lab Comments** Sample used as MSD. There is too much mirex in the sample to obtain an acceptable recovery with the QC / Sample Comments amount of spike used. **Approved By** SROBERTS 06/01/2011 On

Sample: Date Received: Date Collected:	130676 04/27/2011 17:18 Begin:	Test: OI Matrix SF End: 09/13/2010	S	Batch: Collected by: Sample Type: Station ID:	
	NEDO-DERR	05, 15, 2010		Customer ID:	
	NEASE_MFLBC FT10-32.0-WS-O			External ID:	
· •	130676-FSHC-1 JALEXANDER	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/21/2011 05/21/2011	End 05/21/2011 05/21/2011
Analytes %Lipids		CAS Num N/A	ber Result 3.43	RL	Qualifier
Field Comments	Mirex requested	- ·			
Lab Comments		·		· ·	
QC / Sample Comments					
Annroved Rv	SROBERTS		06/01/2011		

Sample:	130690	Test:	OEPA 581.5		Batch:	ORGLIP_0533-052411
Date Received:	04/27/2011 17:18	Matrix	SFF		Collected by:	OTHERS
	Begin:	End:		5	Sample Type:	OTHER
Date Collected:		09/14/20	10 08:30		Station ID:	
Program:	NEDO-DERR				Customer ID:	
Client:	NEASE_MFLBC				External ID:	
Location:	FT10-38.4 WS-F					
_					Begin	End
Aliquot:	130690-FSHC-1	Dilution: 1		Prep Date:	05/21/2011	05/21/2011
Analyst:	JALEXANDER	Units: %	A	nalysis Date:	05/21/2011	05/21/2011
Analytes		CAS No	ımber	Result	RL	Qualifier
%Lipids		N/A		1.38		
	Miner			 		
Field Comments	Mirex requested					
Lab Comments						
QC / Sample Comments		-				
Annroved Rv	SROBERTS		06/0	1/2011		

Date Collected: Program: Client:	130672 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-12.5-CC-O	Test: Matrix End: 09/13/20		\$	Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	
	130672-FSHC-1 CRHINOCK	Dilution: 1 Units: %	A	•	Begin 05/24/2011 05/24/2011	•
Analytes %Lipids		CAS Nu N/A	ımber	Result 8,69	RL	Qualifier
Field Comments	Mirex requested					
Lab Comments	5 Fish			·	_	
QC / Sample Comments						
Approved By	SROBERTS	On	06/0	1/2011		

Date Collected: Program: Client:	130677 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-32.0-CC-F	Test: OEPA 581 Matrix SFF End: 09/13/2010 18:00	s C	Batch: Collected by: ample Type: Station ID: customer ID: External ID:	
				Begin	End
	130677-FSHC-1	Dilution: 1	•	05/24/2011	05/24/2011
Analyst:	CRHINOCK	Units: %	Analysis Date:	05/24/2011	05/24/2011
Analytes		CAS Number	Result	RL	Qualifier
%Lipids		N/A	1.15		
Field Comments	Mirex requested				
QC / Sample Comments				·	
Approved By	SROBERTS	On 06,	/01/2011		

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Test: Matrix End: 09/14/20		Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	OTHER
· •	130680-FSHC-1 CRHINOCK	Dilution: 1 Units: %	=	Begin te: 05/24/2011 te: 05/24/2011	End 05/24/2011 05/24/2011
Analytes %Lipids		CAS Nu N/A	umber Result		Qualifier
Field Comments	Mirex requested				
Lab Comments			···		
QC / Sample Comments					
Approved By	SROBERTS	On	06/01/2011		

Date Collected: Program: Client:	04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC	Test: OEPA 5 Matrix SFF End: 09/14/2010 09:1	s S	Batch: Collected by: ample Type: Station ID: ustomer ID: External ID:	
Location:	FT10-33.3-WS-F				
l	130681-FSHC-1 CRHINOCK	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/24/2011 05/24/2011	• •
Analytes %Lipids		CAS Number N/A	Result 0,640	RL	Qualifier
Field Comments	Mirex requested		,		
Lab Comments					
QC / Sample Comments					
Approved By	SROBERTS	On	06/01/2011		

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Mat End:	est: OEPA 58 rix SFF 1/2010 09:15		Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	OTHER
1	130682-FSHC-1 CRHINOCK	Dilution: Units:		Prep Date: Analysis Date:		End 05/24/2011 05/24/2011
Analytes %Lipids		CAS N/A	Number	Result 1.53	RL.	Qualifier
Field Comments	Mirex requested					
Lab Comments	jar	 ·				
QC / Sample Comments			-			-
Approved By	SROBERTS	00	0	6/01/2011		

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Test: OEPA 581 Matrix SFF End: 09/14/2010 12:00	S	Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	OTHER
•	130684-FSHC-1 CRHINOCK	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/24/2011 05/24/2011	End 05/24/2011 05/24/2011
Analytes %Lipids		CAS Number N/A	Result 0.666	RL	Qualifier
Field Comments	Mirex requested				
Lab Comments					
QC / Sample Comments					
Approved By	SROBERTS	0: 00	5/01/2011		

Date Collected: Program: Client:	130687 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-36.7 WS-O-	Test: OEPA 581 Matrix SFF End: 09/14/2010 15:30		Batch: Collected by: Sample Type: Station ID: Customer ID: External ID;	OTHER
·	130687-FSHC-1 CRHINOCK	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/24/2011 05/24/2011	End 05/24/2011 05/24/2011
Analytes %Lipids		CAS Number N/A	Result 4.63	RL	Qualifier
Field Comments	Mirex requested				<u>.</u>
Lab Comments	jar				
QC / Sample Comments					
Approved By	SROBERTS		5/01/2011		· · · · · · · · · · · · · · · · · · ·

Sample:	130688	Te	st: OEPA 58	1.5	Batch:	ORGLIP_0534-052511
Date Received:	04/27/2011 17:18	Mat	trix SFF		Collected by:	OTHERS
	Begin:	End:		5	Sample Type:	OTHER
Date Collected:		09/14	/2010 15:30		Station ID:	
Program:	NEDO-DERR			(Customer ID:	
Client:	NEASE_MFLBC				External ID:	
Location:	FT10-36.7 WS-F					
			_		Begin	End
Aliquot:	130688-FSHC-1	Dilution:	1	Prep Date:	05/24/2011	05/24/2011
Analyst:	CRHINOCK	Units:	%	Analysis Date:	05/24/2011	05/24/2011
Analytes		CAS	S Number	Result	RL.	Qualifier
%Lipids		N/A		0.888		
Field Comments	Miles and and and a					
rieid Comments	Mirex requested					
Lab Comments	jar					
QC / Sample Comments				<u>-</u>		
Approved By	SROBERTS			6/01/2011		

Date Collected:	04/27/2011 17:18 Begin:	Test: OEPA 581 Matrix SFF End: 09/14/2010 17:00	\$	Batch: Collected by: Sample Type: Station ID: Customer ID:	OTHER
	NEASE_MFLBC FT10-37.5 WS-F			External ID:	•
·	130693-FSHC-1 CRHINOCK	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/24/2011 05/24/2011	End 05/24/2011 05/24/2011
Analytes %Lipids		CAS Number N/A	Result 1,20	RL	Qualifier
ield Comments	Mirex requested				
Lab Comments QC / Sample Comments					
Approved By	SROBERTS	Of Of	5/01/2011 T		

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Test: OEPA 58 Matrix SFF End: 09/13/2010 14:25	S	Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	OTHER
· ·	130670-FSHC-1 TBERTULSON	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/25/2011 05/25/2011	End 05/25/2011 05/25/2011
Analytes %Lipids		CAS Number N/A	Result 1.18	RL	Qualifier
Field Comments	Mirex requested				
Lab Comments					
QC / Sample Comments		· -			
Approved By	SROBERTS	On 0	6/01/2011		

Date Collected: Program:	04/27/2011 17:18 Begin: NEDO-DERR	Test: OEPA 583 Matrix SFF End: 09/13/2010 18:00	S	Collected by: Sample Type: Station ID: Customer ID:	OTHER
Į.	NEASE_MFLBC FT10-32.0-CC-O			External ID:	
	130678-FSHC-1 TBERTULSON	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/25/2011 05/25/2011	End 05/25/2011 05/25/2011
Analytes %Lipids		CAS Number N/A	Result 3.65	RL	Qualifier
Field Comments	Mirex requested				
Lab Comments	2 fish				
QC / Sample Comments		······································			
Approved By	SROBERTS	On 06	5/01/2011		

Sample:	130683	Test: OEPA 58	1.5	Batch:	ORGLIP_0535-052611
Date Received:	04/27/2011 17:18	Matrix SFF	•	Collected by:	OTHERS
	Begin:	End:	5	Sample Type:	OTHER
Date Collected:		09/14/2010 12:00		Station ID:	
Program:	NEDO-DERR		(Customer ID:	
Client:	NEASE_MFLBC			External ID:	
Location:	FT10-35.4-W\$-F				
-		 		Begin	End
Aliquot:	130683-FSHC-1	Dilution: 1	Prep Date:	05/25/2011	05/25/2011
Analyst:	TBERTULSON	Units: %	Analysis Date:	05/25/2011	05/25/2011
Analytes		CAS Number	Result	RL	Qualifier
%Lipids		N/A	0.788		
Field Comments	Mirex requested				
Lab Comments					
QC / Sample Comments				 	
Approved By	SROBERTS		6/01/2011	••	

Sample: Date Received:	130685 04/27/2011 17:18 Begin:		est: OEPA 58: trix SFF	(Batch: Collected by: Sample Type:	
Date Collected:	-	09/14	1/2010 12:00		Station ID:	
Program:	NEDO-DERR			(Customer ID:	
Client:	NEASE_MFLBC				External ID:	
Location:	FT10-35.4-YB-O					
					Begin	End
Aliquot:	130685-FSHC-1	Dilution:	1	Prep Date:	05/25/2011	05/25/2011
Analyst:	TBERTULSON	Units:	%	Analysis Date:	05/25/2011	05/25/2011
Analytes		CAS	S Number	Result	RL	Qualifier
%Lipids		N/A	1	4.59		
Field Comments	Mirex requested					·····
Lab Comments		<u></u>				
QC / Sample Comments				<u>=</u> .		
Approved By	SROBERTS		06	5/01/2011		

Date Collected: Program: Client:	130689 04/27/2011 17:18 Begin: NEDO-DERR NEASE_MFLBC FT10-37.5 WS-O	Test: OEPA Matrix SFF End: 09/14/2010 17:	5 90	Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	
	130689-FSHC-1 TBERTULSON	Dilution: 1 Units: %	Prep Date: Analysis Date:	Begin 05/25/2011 05/25/2011	End 05/25/2011 05/25/2011
Analytes %Lipids		CAS Number N/A	Result 6.01	RL	Qualifier
Field Comments	Mirex requested			<u>.</u>	
Lab Comments					
QC / Sample Comments					
Approved By	SROBERTS		06/01/2011		

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Matr End:	st: OEPA 583 ix SFF 2010 08:30		Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	OTHER	
		·			Begin	End	٦
•	130691-FSHC-1	Dilution:	1	Prep Date:	05/25/2011	05/25/2011	١
Analyst:	TBERTULSON	Units: "	%	Analysis Date:	05/25/2011	05/25/2011	
Analytes		CAS	Number	Result	RL	Qualifier	_
%Lipids		N/A	_	4.47			
Field Comments	Mirex requested				-		
Lab Comments				 			
QC / Sample Comments			,-				
Approved By	SROBERTS	0-	06	5/01/2011			

Date Collected: Program: Client:	04/27/2011 17:18 Begin:	Test: OEPA 58 Matrix SFF End: 09/14/2010 12:00		Batch: Collected by: Sample Type: Station ID: Customer ID: External ID:	OTHER
	120500 2010 1			Begin	End
•	130692-FSHC-1	Dilution: 1	_	05/25/2011	05/25/2011
Analyst:	TBERTULSON	Units: %	Analysis Date:	05/25/2011	05/25/2011
Analytes		CAS Number	Result	RL	Qualifier
%Lipids	. .	N/A	3.65	-	
Field Comments	Mirex requested				
Lab Comments					
QC / Sample Comments		,			
Annroved Rv	SROBERTS		6/01/2011		

Test: OEPA 581.5 Sample: 130694 Batch: ORGLIP_0535-052611 Collected by: OTHERS **Date Received:** 04/27/2011 17:18 **Matrix** SFF Begin: End: Sample Type: OTHER **Date Collected:** 09/14/2010 09:15 Station ID: Program: NEDO-DERR **Customer ID:** Client: NEASE_MFLBC External ID: Location: FT10-33.3-CC-O L7NX-6 Begin End Aliquot: 130694-FSHC-1 Dilution: 1 **Prep Date:** 05/25/2011 05/25/2011 Analyst: TBERTULSON Units: % **Analysis Date:** 05/25/2011 05/25/2011 **Analytes CAS Number** Result RL Qualifier %Lipids N/A 5.17 **Field Comments** Mirex requested L7NX6 008,004,005,006 composite 4 jars **Lab Comments** QC / Sample Comments **Approved By** SROBERTS 06/01/2011 On

Sample:	130686	Test: OEPA 581	.5	Batch:	ORGLIP_0536-06061
Date Received:	04/27/2011 17:18	Matrix SFF	(Collected by:	OTHERS
	Begin:	End:	9	iample Type:	OTHER
Date Collected:		09/14/2010 15:30		Station ID:	
Program:	NEDO-DERR		(Customer ID:	
Client:	NEASE_MFLBC			External ID:	
Location:	FT10-36.7 YB-O			_	
-		·	-	Begin	End
Aliquot:	130686-FSHC-1	Dilution: 1	Prep Date:	06/03/2011	06/03/2011
Analyst:	TBERTULSON	Units: %	Analysis Date:	06/03/2011	06/03/2011
Analytes		CAS Number	Result	RL	Qualifier
%Lipids		N/A	4.18		
Field Comments	Mirex requested				
Lab Comments					
QC / Sample Comments					
Approved By	SROBERTS	On 06	/08/2011	-	

APPENDIX C

DATA QUALITY ASSESSMENT

DATA QUALITY ASSESSMENT SOIL AND SEDIMENT ANALYTICAL RESULTS OPERABLE UNIT 3 FORMER NEASE CHEMICAL SITE SALEM, OHIO

This report presents the findings of the data quality review performed on the analyses of environmental samples collected at Operable Unit 3 of the Former Nease Chemical Site, located in Salem, Ohio (Site). Sediment samples were collected from September 8, 2010 to September 16, 2010; soil samples were collected from September 20, 2010 to October 5, 2010 and from March 28, 2011 to March 31, 2011 (Event). The chemical data for samples collected at the Site were assessed to identify quality issues which could affect the use of the data for decision making purposes.

The Event consisted of analysis of 52 primary soil samples, 49 primary sediment samples, and the following Quality Control (QC) samples:

- thirteen (13) field duplicate samples; and
- thirteen (13) matrix spike/matrix spike duplicate (MS/MSD) samples.

Information regarding the sample point identifications, analytical parameters, QC samples, sampling dates, and contract laboratory sample delivery group (SDG) designations are summarized in Table C-1.

Samples were analyzed for mirex, total organic carbon (TOC), percent solids, and grain size. TestAmerica Laboratories, Inc. of North Canton, Ohio (OhioVAP Certification #CL0024), performed all chemical analyses, except for grain size analysis which was performed by TestAmerica Laboratories, Inc. of Burlington, Vermont. Analyses were performed following:

- Mirex following USEPA SW-846¹ Method 8081B Organochlorine Pesticides by Gas Chromatography (November, 2000);
- Total Organic Carbon following USEPA Methods of Soil Analysis (MSA) Walkley-Black Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (April, 2002);
- Percent Solids following USEPA Methods for Chemical Analysis of Water and Wastes (MCAWW)
 160.3 MOD; and
- Grain Size following ASTM International Method D422 Standard Test Method for Particle-Size Analysis of Soils.

The laboratory data were evaluated following USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review (June 2008), as applicable to the above analytical methods.

¹ USEPA, 1996, Test methods for evaluating solid waste, physical/chemical methods (SW-846): 3rd edition, Environmental Protection Agency, National Center for Environmental Publications, Cincinnati, Ohio, accessed at URL http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm

In general, chemical results for the samples collected at the Site were qualified on the basis of outlying precision or accuracy parameters, or on the basis of professional judgment. The following definitions provide brief explanations of the qualifiers which may have been assigned to data during the data validation process.

The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

The data generated as part of this Event met the QC criteria established in the respective USEPA methods and the National Functional Guidelines, with the exception of the following bulleted items highlighting qualifications to specific parameters. Although these qualifications were applied to some of the samples collected at the site, the qualifications may not have been required or applied to all samples collected. Table C-2 summarizes all qualifications applied to the data, with applicable qualifier comments.

- Several mirex and TOC results were qualified as estimated (J) because the relative percent difference (RPD) between the field duplicate and corresponding primary sample was above QC criteria.
- One TOC result was qualified as estimated (J) because the laboratory duplicate RPD was above QC criteria.
- Several mirex results were qualified as estimated (J) because the matrix spike (MS) recovery was above QC criteria.
- A number of mirex samples were qualified as estimated (J) because a surrogate recovery was above QC criteria.
- Several mirex results were qualified as estimated (J) when the continuing calibration percent difference (%D) was greater than 25%.
- Several mirex results were qualified as estimated (J) when the %D between the primary and confirmation columns was greater than 25%. The higher result was reported by the laboratory.

Several samples were analyzed at dilutions, due to high concentrations of target analytes. Dilutions do not require qualifications based on National Functional Guidelines.

Based on the data quality assessment, the analytical data for samples collected at the Site were determined to be acceptable (including estimated data) for their intended use. Generally, acceptable levels of accuracy and precision, based on laboratory control samples, matrix spike/matrix spike duplicates, field duplicate and surrogate recoveries, were achieved for the data. In addition, the data completeness (i.e. the ratio of the amount of valid data obtained to the amount expected, including estimated (J/UJ) data) was 100%.

TABLE C-1
Sample Summary and Analytical Parameters
PDI Technical Memorandum
Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Lab SDG	Field ID	Matrix	Sample Date	Mirex	тос	Percent Solids	Grain Size	Field Duplicate	MS/MSD
A0I130456	SD10-31.1R-0-2	SD	9/8/2010	x	х	х	X		
A0I130456	SD10-31.2L-0-4	SD	9/8/2010	x	х	х	x		
A0I130456	SD10-31.3R-0-6	SD	9/8/2010	×	х	х	×		
A0I130456	SD10-31.4R-0-6	SD	9/8/2010	х	×	х	×		
A0I130456	SD10-31.7L-0-4	SD	9/8/2010	×	Х.	×	x		
A0I130456	SD10-31.8-0-4	SD	9/8/2010	×	х	×	x		
A0I130456	SD10-31.9C-0-4	SD	9/8/2010		×	×			
A0I130456	SD10-32.0-0-6	SD	9/8/2010	х	×	×	X		
A0I130456	SD10-32.0C-0-3	SD	9/8/2010	 ^ -	×	×	<u> </u>		_
A0I130456	SD10-32.1R-0-1	SD	9/9/2010		×	x	-	<u> </u>	
-			1	X			X		
A0I130456	SD10-32.2L-0-1	SD	9/9/2010	×	X	×	×		, х
A0I130456	SD10-32.3L-0-6	SD	9/9/2010	X	×	X	X		
A0I130456	SD10-32.9C-0-3	SD	9/9/2010		X	×	<u> </u>		
A0I130456	SD10-32.9R-0-3	SD	9/9/2010	X	X	X	×		
A0I130456	SD10-33.0R-0-2	SD	9/9/2010	X	X	X	х		
A0I130456	SD10-33.1L-0-4	SD	9/9/2010	x	X	x	, х		
A0I130456	SD10-DUP-01	SD	9/9/2010	x	x	x	x	x	
A0I150590	SD10-33.2L-0-6	SD	9/13/2010	х	×	x	×		
A01150590	SD10-33.5-0-4	SD	9/13/2010	x	Х.	×	x		
A0I150590	SD10-33.6R-0-2	SD	9/13/2010	x	х	x	x		
A0I150590	SD10-33.7R-0-3	SD	9/13/2010	×	х	х	х		
A0I150590	SD10-33.8C-0-2	SD	9/13/2010	×	x	x	×		
A0I150590	SD10-33.8R-0-3	SD	9/13/2010	x	×	×	- <u>~</u>		
A0I150590	SD10-33.9R-0-4	SD	9/13/2010	×	x	x	x		
A01150590	SD10-DUP2	SD	9/13/2010	×	×	×	x	x	
A0I150590	SD10-34.4L-0-3	SD	9/14/2010	×	x	×	x		• •
A0I150590	SD10-34.5R-0-7	SD	9/14/2010	×	×	X	×		
A0I150590	SD10-34.6L-0-3	SD	9/14/2010	х	x	х	x		
A0I150590	SD10-34.8R-0-3	SD	9/14/2010	X	х	X	х		x
A0I150590	SD10-34.9L-0-2	SD	9/14/2010	x	X-	х	x		
A0I150590	SD10-35.1R-0-2	SD	9/14/2010	X	X	X	X		
A0I150590 A0I150590	SD10-35.2L-0-1 SD10-35.4C-0-4	SD SD	9/14/2010 9/14/2010	X	X	X	X		
A01150590 A01150590	SD10-35.4C-0-4 SD10-36.6L-0-2	SD	9/14/2010	X X	X	X	X		
A0I160575	SD10-35.7R-0-2	SD	9/15/2010	x	×	×	x		
A0I160575	SD10-35.8R-0-1	SD	9/15/2010	x	×	×	х		
A0I160575	SD10-35.9R-0-2	SD	9/15/2010	х	х	х	х		
A0I160575	SD10-36.0L-0-2	SD	9/15/2010	х	x	х	х		
A0J120402	SD10-36.1C-0-3	SD	9/15/2010		х	х			
A01160575	SD10-36.1L-0-1	SD	9/15/2010	X	X	X	X	ļ	
A0I160575	SD10-36.2R-0-1 SD10-36.3L-0-1	SD	9/15/2010	X .	X	X	X		×
A0I160575 A0I160575	SD10-36.4L-0-2	SD	9/15/2010	X X	X	X	X		
A01160575	SD10-37.0-0-2	SD	9/15/2010	X	×	×	X		
A01160575	SD10-37.1R-0-2	SD	9/15/2010	×	×	×	x	<u> </u>	
A0I160575	SD10-37.2-0-12	SD	9/15/2010	×	x	x	X		
A0I160575	SD10-DUP3	ŞD	9/15/2010	х	x	х	x	х	
A0I160575	SD10-37.3R-0-6	SD	9/16/2010	х	x	х	х		×
A01160575	SD10-37.4R-0-4	SD	9/16/2010	X	X	X	X	<u> </u>	ļ
A0I160575	SD10-37.5R-0-6	SD	9/16/2010	x	X	Х	X	l	l

TABLE C-1
Sample Summary and Analytical Parameters
PDI Technical Memorandum
Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

A01300420	Lab SDG	Field ID	Matrix	Sample Date	Mirex	тос	Percent Solids	Grain Size	Field Duplicate	MS/MSD
ADII160576 SD10-DUP4 SD	A0I160575	SD10-37.6-0-3	SD	9/16/2010	x	×	×	×		
ADIZ20591 FPS10-001 SO 92/202010 X X X X X X ADIZ20591 FPS10-003 SO 92/202010 X X X X X X X X ADIZ20591 FPS10-003 SO 92/202010 X X X X X X X X X	A0J120402	SD10-37.6C-0-2	SD	9/16/2010		х	х			
A01220591 FPS10-001 SO 92/02/010 X X X X X X A01220591 FPS10-002-01 SO 92/02/010 X X X X X X A01220591 FPS10-003 SO 92/02/010 X X X X X X A01220591 FPS10-004 SO 92/02/010 X X X X X X A01220591 FPS10-004 SO 92/02/010 X X X X X X X A01220591 FPS10-005 SO 92/12/010 X X X X X X X A01220591 FPS10-006 SO 92/12/010 X X X X X X X A01220591 FPS10-006 SO 92/12/010 X X X X X X X A01220591 FPS10-006 SO 92/12/010 X X X X X X A01220591 FPS10-006-01 SO 92/12/010 X X X X X X A01220591 FPS10-006-02 SO 92/12/010 X X X X X A01220591 FPS10-006-02 SO 92/12/010 X X X X X X A01220593 FPS10-006-02 SO 92/12/010 X X X X X X A01220593 FPS10-006-02 SO 92/12/010 X X X X X X A01220593 FPS10-006-02 SO 92/12/010 X X X X X X A01240563 FPS10-011 SO 92/22/010 X X X X X A01240563 FPS10-011 SO 92/22/010 X X X X X A01240563 FPS10-012 SO 92/22/010 X X X X X A01240563 FPS10-012 SO 92/22/010 X X X X X A01240563 FPS10-012 SO 92/22/010 X X X X X A01300420 FPS10-013 SO 92/28/010 X X X X X A01300420 FPS10-013 SO 92/28/010 X X X X X A01300420 FPS10-013 SO 92/28/010 X X X X X X A01300420 FPS10-016 SO 92/28/010 X X X X X X A01300420 FPS10-017 SO 92/28/010 X X X X X X A01300420 FPS10-017 SO 92/28/010 X X X X X X X A01300420 FPS10-017 SO 92/28/010 X X X X X X X A01300420 FPS10-017 SO 92/28/010 X X X X X X X A01300420 FPS10-017 SO 92/28/010 X X X X X X X A01300420 FPS10-019 SO 92/28/010 X X X X X X A01300420 FPS10-020 SO 92/28/010 X X X X X X A0120042		SD10-DUP4	SD	9/16/2010	×	×	×		x	
A01220591 FPS10-002-01 SO 9120/2010 X	A0I220591	FPS10-001	so					X		
A01220591 FPS10-003 SO 912/2010 X X X X X		FPS10-002-01	so	9/20/2010						
A01220591 FPS10-00H										
A01220591									¥	
A01220591								· ·		
A01220591						 				
A01220591									<u> </u>	
A01220591									-	
A01220591					_					X
A01240563									ļ	
A01240563 FPS10-D11 SO 9/22/2010 X X X X X X A01240563 FPS10-DUP-H-02 SO 9/22/2010 X X X X X X A01240563 FPS10-D12 SO 9/23/2010 X X X X X X X A01300420 FPS10-D13 SO 9/28/2010 X X X X X A01300420 FPS10-D14 SO 9/28/2010 X X X X X X A01300420 FPS10-D15 SO 9/28/2010 X X X X X X A01300420 FPS10-D15 SO 9/28/2010 X X X X X X X A01300420 FPS10-D15 SO 9/28/2010 X X X X X X X X A01300420 FPS10-D16 SO 9/28/2010 X X X X X X X X A01300420 FPS10-D18 SO 9/28/2010 X X X X X X X A01300420 FPS10-D194 SO 9/28/2010 X X X X X X A01300420 FPS10-D194 SO 9/28/2010 X X X X X X A01300420 FPS10-D194 SO 9/28/2010 X X X X X X X A01300420 FPS10-D19 SO 9/29/2010 X X X X X X X A01300420 FPS10-D19 SO 9/29/2010 X X X X X X X A01300420 FPS10-O21 SO 9/29/2010 X X X X X X A01300420 FPS10-O21 SO 9/29/2010 X X X X X X A01300420 FPS10-D19 SO 9/29/2010 X X X X X X A01300420 FPS10-D19 SO 9/29/2010 X X X X X X A01300420 FPS10-D22 SO 9/29/2010 X X X X X X A01300420 FPS10-D22 SO 9/29/2010 X X X X X X X A01300420 FPS10-D22 SO 9/30/2010 X X X X X X X A01300420 FPS10-D24 SO 9/30/2010 X X X X X X X A01300425 FPS10-D24 SO 9/30/2010 X X X X X X X X X										
A01240563							 			
A01300420								×		
A01300420 FPS10-013 SO 9/28/2010 X X X X X X A01300420 FPS10-014 SO 9/28/2010 X X X X X X X A01300420 FPS10-015 SO 9/28/2010 X X X X X X X A01300420 FPS10-016 SO 9/28/2010 X X X X X X X A01300420 FPS10-016 SO 9/28/2010 X X X X X X X A01300420 FPS10-016 SO 9/28/2010 X X X X X X X A01300420 FPS10-017 SO 9/28/2010 X X X X X X X A01300420 FPS10-017 SO 9/28/2010 X X X X X X X X A01300420 FPS10-018 SO 9/28/2010 X X X X X X X A01300420 FPS10-018 SO 9/28/2010 X X X X X X X A01300420 FPS10-018 SO 9/28/2010 X X X X X X X A01300420 FPS10-019 SO 9/29/2010 X X X X X X X X A01300420 FPS10-020 SO 9/29/2010 X X X X X X X X A01300420 FPS10-021 SO 9/29/2010 X X X X X X X X A01300420 FPS10-021 SO 9/29/2010 X X X X X X X X A01300420 FPS10-022 SO 9/29/2010 X X X X X X X X A01300420 FPS10-022 SO 9/29/2010 X X X X X X X X A01300420 FPS10-021 SO 9/29/2010 X X X X X X X X A01300420 FPS10-022 SO 9/29/2010 X X X X X X X X X A01300420 FPS10-021 SO 9/30/2010 X X X X X X X X X X A01300420 FPS10-022 SO 9/29/2010 X X X X X X X X X X X X X X X X X X								ļ <u>.</u>	X	
A01300420					Х	X	х	X		
A01300420					X	x	×	x		
A01300420				9/28/2010	X	X	Χ.	x		
A01300420	A0I300420		SO	9/28/2010	X	X	x	x		
A01300420	A01300420		SO	9/28/2010	X	x	х	x		
A01300420	A0I300420	FPS10-017	SO	9/28/2010	x	x	x	x		
A01300420	A0I300420	FPS10-DUP4	so	9/28/2010	X	х	х		x	x
A01300420	A0I300420	FPS10-018	SO	9/29/2010	x	X	х	×		·
A0I300420	A0I300420	FPS10-019	so	9/29/2010						x
A0 300420	A0I300420	FPS10-020	SO	9/29/2010	х	х	х	x		
A0I300420		FPS10-021	so						 	
A01300420								_		<u> </u>
A0J040425							 	<u> </u>	<u> </u>	
A0J040425 FPS10-024 SO 9/30/2010 x x x x x A A A A A A A A A A A A A A								₩.		
A0J040425 FPS10-027 SO 9/30/2010 X X X X X X A A0J040425 FPS10-028 SO 9/30/2010 X X X X X X A A0J040425 FPS10-029 SO 10/1/2010 X X X X X X A A0J040425 FPS10-030 SO 10/1/2010 X X X X X X A A0J040425 FPS10-030 SO 10/1/2010 X X X X X X A A0J040425 FPS10-031 SO 10/1/2010 X X X X X X A A0J040425 FPS10-032 SO 10/1/2010 X X X X X X X A0J040425 FPS10-032 SO 10/1/2010 X X X X X X X A0J040425 FPS10-033 SO 10/1/2010 X X X X X X X A0J040425 FPS10-034 SO 10/1/2010 X X X X X X X A0J040425 FPS10-034 SO 10/1/2010 X X X X X X X A0J040425 FPS10-034 SO 10/1/2010 X X X X X X X A0J040425 FPS10-035 SO 10/1/2010 X X X X X X X X A0J040425 FPS10-035 SO 10/1/2010 X X X X X X X X X A0J040425 FPS10-035 SO 10/1/2010 X X X X X X X X X X X A0J040425 FPS10-035 SO 10/1/2010 X X X X X X X X X X X X X X X X X X								_	 	
A0J040425 FPS10-028 SO 9/30/2010 x x x x A0J040425 FPS10-029 SO 10/1/2010 x x x x A0J040425 FPS10-030 SO 10/1/2010 x x x x A0J040425 FPS10-031 SO 10/1/2010 x <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• </td> <td></td> <td></td> <td></td>							• 			
A0J040425 FPS10-029 SO 10/1/2010 x x x x A0J040425 FPS10-030 SO 10/1/2010 x x x x A0J040425 FPS10-031 SO 10/1/2010 x										ļ
A0J040425 FPS10-030 SO 10/1/2010 x x x x x x X X X X X X X X X X X X X										
A0J040425 FPS10-031 SO 10/1/2010 x </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u></u></td> <td></td>									<u></u>	
A0J040425 FPS10-032 SO 10/1/2010 x </td <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>	·								<u> </u>	
A0J040425 FPS10-033 SO 10/1/2010 x x x x A0J040425 FPS10-034 SO 10/1/2010 x x x x A0J040425 FPS10-DUP7 SO 10/1/2010 x x x x A0J060517 FPS10-035 SO 10/2/2010 x x x x A0J060517 FPS10-036 SO 10/2/2010 x x x x A0J060517 FPS10-037 SO 10/2/2010 x x x x A0J060517 FPS10-038 SO 10/2/2010 x x x x A0J060517 FPS10-DUP8 SO 10/2/2010 x x x x x A0J060517 FPS10-049 SO 10/3/2010 x x x x x A1C080536 FPS10-041 SO 10/3/2010 x x x x x A1C0							 		L	
A0J040425 FPS10-034 SO 10/1/2010 x </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td>X</td>									ļ	X
A0J040425 FPS10-DUP7 SO 10/1/2010 x x x A0J060517 FPS10-035 SO 10/2/2010 x x x x A0J060517 FPS10-036 SO 10/2/2010 x x x x A0J060517 FPS10-037 SO 10/2/2010 x x x x A0J060517 FPS10-038 SO 10/2/2010 x x x x A0J060517 FPS10-DUP8 SO 10/2/2010 x x x x x A0J060517 FPS10-039 SO 10/3/2010 x x x x x x x A0J060517 FPS10-040 SO 10/3/2010 x <								_	ļ	
A0J060517 FPS10-035 SO 10/2/2010 x x x x A0J060517 FPS10-036 SO 10/2/2010 x x x x A0J060517 FPS10-037 SO 10/2/2010 x x x x A0J060517 FPS10-038 SO 10/2/2010 x x x x x A0J060517 FPS10-DUP8 SO 10/2/2010 x <								<u> </u>		ļ .
A0J060517 FPS10-036 SO 10/2/2010 x x x x A0J060517 FPS10-037 SO 10/2/2010 x x x x A0J060517 FPS10-038 SO 10/2/2010 x x x x A0J060517 FPS10-DUP8 SO 10/2/2010 x x x x x x A0J060517 FPS10-039 SO 10/3/2010 x <				_				ļ	X	
A0J060517 FPS10-037 SO 10/2/2010 x x x x A0J060517 FPS10-038 SO 10/2/2010 x <										
A0J060517 FPS10-038 SO 10/2/2010 x </td <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td> </td> <td>X</td> <td></td> <td></td>					X		 	X		
A0J060517 FPS10-DUP8 SO 10/2/2010 x x x x x x x x x x x x x x x x x x					X	X	×	×		
A0J060517 FPS10-039 SO 10/3/2010 x x x x A0J060517 FPS10-040 SO 10/3/2010 x x x x A0J060517 FPS10-041 SO 10/4/2010 x x x x A1C080536 FPS10-042 SO 10/4/2010 x x x x A1C080536 FPS10-043 SO 10/4/2010 x x x x A0J060517 FPS10-044 SO 10/4/2010 x x x x A0J060517 FPS10-045 SO 10/4/2010 x x x x A0J060517 FPS10-046 SO 10/4/2010 x x x x						х	X	X		
A0J060517 FPS10-040 SO 10/3/2010 x x x x A0J060517 FPS10-041 SO 10/4/2010 x <					х	х	X		X	Х
A0J060517 FPS10-041 SO 10/4/2010 x x x x x x x x x x x x x x x x x x	A0J060517		SO	10/3/2010	x	х	x	x		
A1C080536 FPS10-042 SO 10/4/2010 x x x x A1C080536 FPS10-043 SO 10/4/2010 x x x A0J060517 FPS10-044 SO 10/4/2010 x x x A0J060517 FPS10-045 SO 10/4/2010 x x x A0J060517 FPS10-046 SO 10/4/2010 x x x	A0J060517		SO	10/3/2010	х	х	x	x		
A1C080536 FPS10-042 SO 10/4/2010 x x x x A1C080536 FPS10-043 SO 10/4/2010 x x x A0J060517 FPS10-044 SO 10/4/2010 x x x A0J060517 FPS10-045 SO 10/4/2010 x x x A0J060517 FPS10-046 SO 10/4/2010 x x x	A0J060517	FPS10-041	SO	10/4/2010	х	х	х	х	1	×
A1C080536 FPS10-043 SO 10/4/2010 x x x A0J060517 FPS10-044 SO 10/4/2010 x x x x A0J060517 FPS10-045 SO 10/4/2010 x x x x A0J060517 FPS10-046 SO 10/4/2010 x x x x	A1C080536	FPS10-042	so	10/4/2010			 _			×
A0J060517 FPS10-044 SO 10/4/2010 x x x x A0J060517 FPS10-045 SO 10/4/2010 x x x x A0J060517 FPS10-046 SO 10/4/2010 x x x x		FPS10-043	so		-					
A0J060517 FPS10-045 SO 10/4/2010 x x x x x X A0J060517 FPS10-046 SO 10/4/2010 x x x x x X X X X X X X X X X X X X X						x				
A0J060517 FPS10-046 SO 10/4/2010 x x x x									<u> </u>	
									<u> </u>	<u> </u>
A0J060517 FPS10-DUP9 SO 10/4/2010 x x x x								 ^	-	<u> </u>

TABLE C-1

Sample Summary and Analytical Parameters PDI Technical Memorandum

Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Lab SDG	Field ID	Matrix	Sample Date	Mirex	тос	Percent Solids	Grain Size	Field Duplicate	MS/MSD
A0J060517	FPS10-047	so	10/5/2010	×	x	×			
A0J060517	FPS10-048	SO	10/5/2010	×	х	x	х		
A1C300593	FPS10-053	SO	3/28/2011	X	х	X	×		
A1C300593	FPS10-053 FD	. so	3/28/2011	X	X	X		х	
A1C300562	FPS10-054	SO	3/29/2011	x	X	X	х	-	×
A1C300562	FPS10-056	SO	3/29/2011	X	х	x	x		×
A1C300562	FPS10-057	. so	3/29/2011	×	X · ·	. x	x		
A1C300562	FPS10-057FD	SO	3/29/2011	· x	Χ.	×		×	<u> </u>
A1C300562	FPS10-058	so	3/29/2011	х	x	×	х		
A1C310607	FPS10-066	SO	3/31/2011	x	x	x	х		

Notes: MS/MSD - matrix spike/matrix spike duplicate

SD = sediment

SDG = sample delivery group

SO = soil

TOC = total organic carbon

TABLE C-2
Data Qualifier Summary
PDI Technical Memorandum
Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Lab SDG	Field ID	Matrix	Analyte	Qualifier	Comments
A0130456	SD10-31.1R-0-2	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-31.7L-0-4	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-31.8-0-4	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-32.1R-0-1	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-32.3L-0-6	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-32.9R-0-3	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-33.0R-0-2	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-33.1L-0-4	SD	Mirex	J	Continuing calibration %D > 25%
A0130456	SD10-DUP-01	SD	Mirex	J	Continuing calibration %D > 25%
A0I130456	SD10-31.2L-0-4	SD	Mirex	J	MS Recovery above QC criteria
A0I130456	SD10-31.3R-0-6	SD	Mirex	J	MS Recovery above QC criteria
A0I130456	SD10-31.4R-0-6	SD	Mirex	J	MS Recovery above QC criteria
A0I130456	SD10-32.0-0-6	SD	Mirex	J	MS Recovery above QC criteria
A0I130456	SD10-32.2L-0-1	SD	Mirex	J	MS Recovery above QC criteria
A0I150590	SD10-33.7R-0-3	SD	Mirex	J	Field duplicate RPD above QC criteria
A0I150590	SD10-DUP2	SD	Mirex	J	Field duplicate RPD above QC criteria
A01160575	SD10-36.1L-0-1	SD	Mirex	J	Field duplicate RPD above QC criteria
A0I160575	SD10-37.2-0-12	SD	Mirex	J	Surrogate recovery outside QC criteria
A0I160575	SD10-37.5R-0-6	SD .	Mirex	J	Field duplicate RPD above QC criteria
A0I160575	SD10-DUP3	SD .	Mirex	J	Field duplicate RPD above QC criteria
A0I160575	SD10-DUP4	SD	Mirex	J	Field duplicate RPD above QC criteria
A0I220591	FPS10-001	so	TOC	J	Field duplicate RPD above QC criteria
A0I220591	FPS10-008-02	SO	Mirex	J	Primary and secondary column confirmation >25%
A0I220591	FPS10-DUP-H-01	SO	TOC	J	Field duplicate RPD above QC criteria
A0I240563	FPS10-011	so	Mirex	J	Field duplicate RPD above QC criteria
A0I240563	FPS10-DUP-H-02	SO	Mirex	J	Field duplicate RPD above QC criteria
A0I300420	FPS10-013	so	Mirex	J	Surrogate recovery above QC criteria
A0I300420	FP\$10-015	so	Mirex	J	Surrogate recovery above QC criteria
A0I300420	FPS10-016	so	Mirex	J	Surrogate recovery above QC criteria
A0I300420	FPS10-017	so	Mirex	J	Surrogate recovery above QC criteria
A0I300420	FPS10-DUP4	SO .	Mirex	J	Surrogate recovery above QC criteria
A0I300420	FPS10-DUP5	so	Mirex	J.	Surrogate recovery above QC criteria
A0J040425	FPS10-030	SO	Mirex	J	Field duplicate RPD above QC criteria

TABLE C-2 **Data Qualifier Summary** PDI Technical Memorandum Nease Chemical Site OU3, Columbiana and Mahoning Counties, Ohio

Lab SDG	Field ID	Matrix	Analyte	Qualifier	Comments
A0J040425	FPS10-031	SO	Mirex	J	Surrogate recovery above QC criteria
A0J040425	FPS10-DUP7	SO	Mirex	J	Field duplicate RPD above QC criteria
A0J060517	FPS10-036	SO	. Mirex	·J	Surrogate recovery above QC criteria
A0J060517	FPS10-037	SO	Mirex	J	Surrogate recovery above QC criteria
A0J060517	FPS10-038	SO	Mirex	J	Surrogate recovery above QC criteria
A0J060517	FPS10-041	SO	TOC	J	Laboratory duplicate RPD above QC criteria
A0J060517	FPS10-044	SO	Mirex	· J	Surrogate recovery above QC criteria
A0J060517	FP\$10-047	SO	Mirex	J	Surrogate recovery above QC criteria
A0J060517	FPS10-048	SO	Mirex	J	Surrogate recovery above QC criteria
A0J060517	FPS10-DUP9	SO	Mirex	J	Surrogate recovery above QC criteria
A1C300562	FPS10-053	SO	Mirex	J	Primary and secondary column confirmation >25%
A1C300562	FPS10-053 FD	\$O	Mirex	. J	Primary and secondary column confirmation >25%
A1C300562	FPS10-056	SO	Mirex	J	Primary and secondary column confirmation >25%
A1C300562	FPS10-057	so	Mirex		Primary and secondary column confirmation >25%
A1C300562	FPS10-057FD	SO	Mirex	J	Primary and secondary column confirmation >25%
A1C300562	FPS10-058	SO	Mirex	J	Primary and secondary column confirmation >25%

Notes: %D = percent difference

MS = matrix spike

QC = quality control

RPD = relative percent difference

SD = sediment

SDG = sample delivery group

SO = soil

TOC = total organic carbon

Qualifiers:

J = estimated value

